
PLab1
1.0 Simple programs with core instruction set (I)
1.0.1 Program sections
In this lab we are going to program some simple arithmetical functions to show essential arithmetic and flow
control instructions. We start by the explanation of different program sections.

Fig 1.1 Memory layout of the
program built from several
sections:

 Code - .text,
 Static Data (read-write) .data,(read only).rodata,
 Heap -.bss.

In RISC-V assembly programming, different sections help organize code, data, and uninitialized storage in
memory. These sections follow conventions found in many assembly languages to structure a program
effectively. Here’s an explanation of the commonly used sections:

1. .data Section

The .data section is used for declaring initialized data, like constants and global variables, that should be
stored in memory. Data in this section is writable, meaning it can be modified at runtime.

Example:
.data
message: .asciiz "Hello, RISC-V!" # A null-terminated string
value: .word 10 # A 32-bit integer initialized to 10
array: .word 1, 2, 3, 4, 5 # An array of 5 integers

message: A null-terminated string stored in memory.
 value: A 32-bit integer initialized to 10.
 array: An array of integers initialized to values 1, 2, 3, 4, and 5.

2. .text Section

The .text section contains the actual program code (instructions). This section is typically read-only and is
where the main program logic, functions, and procedures are defined.
--
.text
.global _start # Entry point of the program
_start:
 .option norelax
 la gp, __global_pointer$
 li t0, 10 # Load immediate value 10 into register t0
 la a0, message # Load address of 'message' into a0 for printing
 # Further instructions can follow here, e.g., calls to system functions

_start: The entry point label for the program.

 li t0, 10: Loads the immediate value 10 into register t0.

 la a0, message: Loads the address of the message string into register a0.

3. .bss Section

The .bss section (Block Started by Symbol) is used for declaring variables that are uninitialized at compile
time. The memory for these variables is allocated at runtime and initialized to zero by default. This section is
typically used for large arrays or buffers.

.bss
buffer: .space 100 # Reserve 100 bytes for 'buffer', initialized to 0
count: .word 0 # Reserve space for a 32-bit integer initialized to 0

 buffer: Reserves 100 bytes of uninitialized space, automatically set to zero.

 count: Reserves space for a 32-bit integer, also set to zero by default.

4. Other Sections

.rodata Section (Read-Only Data)

The .rodata section is used for constants or read-only data. Unlike .data, data in .rodata cannot be
modified at runtime.
--
.rodata
pi: .float 3.14159 # A read-only floating-point constant
--
Full Program Example
Here’s a simple RISC-V program that uses .data, .text, and .bss sections.
--
.data
message: .ascii "The count is: " # String to print
init_val: .word 5 # Initialized integer value

.bss
buffer: .space 100 # Uninitialized space for buffer
count: .word 0 # Uninitialized integer

.text

.global _start # Main entry point

_start:
 .option norelax
 la gp, __global_pointer$ # preparing global pointer in gp register
 la a0, message # Load address of 'message' into a0
 li a1, 10 # Load the number 10 into register a1
 sw a1, count # Store the value of a1 into 'count'
 # Further program logic here

1.0.2 Assembly program function system calls
The IO communication between the user program and operating systems is done via function-system calls.
In the first PLab we also use the integrated C I/O functions such as scanf() and printf() to facilitate the
input and the output of the data on user terminal.

In second PLab we try to communicate directly (I/0)via basic system calls.

Fig 1.2 I/O calls with C I/O functions (PLab1) and direct system I/O functions (PLab2)

1.1 Our first program with compilation : HelloRiscV.s
Below is an example of a simple RISC-V assembly program that prints "Hello, RISC-V!" on the terminal
using printf - system call function. Since RISC-V doesn't natively have a printf instruction, we typically
use the standard C library function to do this by setting up the arguments and making a call to printf.

The following program uses the C standard library, so it relies on linking with the libc. To make the printf
call, we need to load the address of the string message and use an environment call (ecall).
--
 .section .data
message:
 .asciz "Hello, RISC-V\n" # Null-terminated string to print

 .section .text
 .globl _start

Entry point of the program
main:
 # Load address of the message into register a0 (1st argument of printf)
 la a0, message # a0 = address of the message
 # Call printf function
 call printf # printf call for C implemented function

 # Exit the program
 li a7, 93 # a7 = 10 (environment call for exit)
 ecall # Make ecall to exit

 # Define a start label to ensure compatibility
_start:
 .option norelax
 la gp, __global_pointer$
 j main # Jump to main

To do:
Analyze the presented code.

Compile (assembly and link) and run the code with:

$gcc HelloRiscV.s -nostartfiles -o HelloRiscV
$./HelloRiscV

Note that we have to use gcc compiler providing standard C library with prinf, scanf, etc.

1.2 Unsigned multiplication with addition and shift instructions

Fig 1.3 The instructions flow for unsigned multiplication with addition and shift instructions

The following is assembly function that multiplies two unsigned 32-bit integers using only addition and shift
instructions. This approach implements a simple version of the shift-and-add algorithm (similar to long
multiplication), which is especially useful for constrained systems that do not have a built-in multiply instruction.

Concept of the Algorithm

 The basic idea is to iterate through each bit of one of the integers (the multiplier).

 For each bit that is set, the other integer (the multiplicand) is added to the result.

 The multiplicand is shifted left for each bit position, while the multiplier is shifted right.

 This process is repeated until all bits of the multiplier have been processed.

The function will take two input arguments in registers a0 and a1 and return the result in a0.

--
 .text
 .globl multiply_unsigned

Function: multiply_unsigned
Description:
Multiplies two unsigned integers using only add and shift instructions.
Arguments:
a0: The first unsigned integer (multiplicand)
a1: The second unsigned integer (multiplier)
Returns:
a0: The product of the two unsigned integers

multiply_unsigned:
 li t0, 0 # Initialize result to 0 (stored in t0)
 li t1, 1 # Mask to test each bit of the multiplier
loop:
 and t2, a1, t1 # Check if the current bit of the multiplier is set
 beq t2, zero, skip_add # If the bit is not set, skip the addition

 add t0, t0, a0 # Add the multiplicand to the result
skip_add:
 sll a0, a0, 1 # Shift the multiplicand left by 1 (multiplying by 2)
 srl a1, a1, 1 # Shift the multiplier right by 1 to process the next bit
 bnez a1, loop # If the multiplier is not zero, continue the loop
 mv a0, t0 # Move the result from t0 to a0 (return value)
 ret # Return to caller
--

Explanation

1. Initialization:

 li t0, 0: Set t0 to 0. This register will accumulate the result of the multiplication.

 li t1, 1: Set t1 as the mask to isolate each bit of the multiplier (a1).

2. Loop:

 Bit Checking:

 and t2, a1, t1: Check if the least significant bit (LSB) of the multiplier (a1) is set.

 beq t2, zero, skip_add: If the LSB is 0, skip the addition step.

 Addition:

 add t0, t0, a0: If the bit is set, add the current value of the multiplicand (a0) to the
result (t0).

 Shifting:

 sll a0, a0, 1: Shift the multiplicand (a0) left by 1, which is equivalent to multiplying
it by 2.

 srl a1, a1, 1: Shift the multiplier (a1) right by 1, effectively moving to the next bit.

 Loop Condition:

 bnez a1, loop: If the multiplier (a1) is not zero, continue the loop.

3. Return:

 mv a0, t0: Move the result from t0 to a0, which is the standard return register.

 ret: Return to the caller.



How the Algorithm Works

 Bitwise Processing: The algorithm processes each bit of the multiplier (a1) from least significant to
most significant. For each bit that is set (1), the current value of the multiplicand (a0) is added to the
result.

 Shift Operations: The multiplicand is shifted left by one position (sll) in each iteration to align with the
next bit of the multiplier. Similarly, the multiplier is shifted right (srl) to check the next bit.

 Accumulation: The result (t0) accumulates the sum of all partial products.

Example

Consider multiplying 3 (00000011 in binary) and 5 (00000101 in binary):

 Initially, a0 = 3 (multiplicand), a1 = 5 (multiplier), and t0 = 0 (result).

 The bits of 5 are processed as follows:

 Bit 0 (LSB): Set (1), so t0 = t0 + a0 = 0 + 3 = 3.

 Shift: a0 is shifted left to 6, a1 is shifted right to 2.

 Bit 1: Not set (0), no addition.

 Shift: a0 is shifted left to 12, a1 is shifted right to 1.

 Bit 2: Set (1), so t0 = t0 + a0 = 3 + 12 = 15.

 Shift: a0 is shifted left to 24, a1 is shifted right to 0.

 The loop ends, and the result (t0 = 15) is returned in a0.

Notes

 This implementation is for unsigned multiplication.

 The result is returned in a0, which is the standard convention for returning values in RISC-V.

 The function uses bitwise shifts and conditional addition to perform multiplication, making it suitable
for systems without hardware multiply support.

This assembly code provides an efficient way to multiply two integers using only basic instructions, which is
particularly useful for simple microcontrollers or environments where a hardware multiplier is not available.
--
To do:
Analyze the code and understand the principle of operation.

Compile the function with:
$ gcc u_mult.s -nostartfiles -c u_mult.o
gcc: warning: u_mult.o: linker input file unused because linking not done

At this stage we may have the following files in our working directory (RVPLabs):

/RVLabs/RVPLabs/lab1$ ls -l
total 24

-rwxrwxr-x 1 bako bako 6680 11月 29 16:24 HelloRiscV
-rw-rw-r-- 1 bako bako 651 11月 29 16:23 HelloRiscV.s
-rw-rw-r-- 1 bako bako 1176 11月 29 16:31 u_mult.o
-rw-rw-r-- 1 bako bako 1095 11月 29 16:30 u_mult.s

1.3 Assembly with scanf and printf (C functions)
The following is an example of a RISC-V RV64 assembly program that reads an integer from the user using the
scanf function provided by the operating system and then outputs it using the printf function. This program
assumes we are working with the standard C library (libc), which provides scanf and printf.

 .data
 fmt_scanf: .asciz "%ld" # Format string for scanf (reading a long integer)
 fmt_printf: .asciz "You entered: %ld\n" # Format string for printf
 number: .quad 0 # Reserve space for a 64-bit integer
 .text
 .globl _start

_start:
 .option norelax
 la gp, __global_pointer$
 # Step 1: Read an integer from the user using scanf
 # Load the address of the format string ("%ld") into a0 (first argument for scanf)
 la a0, fmt_scanf # First argument for scanf (the format string)
 # Load the address of the variable 'number' into a1 (second argument for scanf)
 la a1, number # Second argument for scanf (address of the variable)
 # Call scanf
 call scanf # Use the provided scanf function to read input
 # Step 2: Print the entered integer using printf
 # Load the address of the printf format string ("You entered: %ld\n") into a0
 la a0, fmt_printf # First argument for printf (format string)
 # Load the value of 'number' into a1 (second argument for printf)
 ld a1, number # Load the integer value from memory (64-bit integer)
 # Call printf
 call printf # Use the provided printf function to print output
 # Step 3: Exit the program
 li a7, 93 # syscall number for exit (in RV64)
 li a0, 0 # exit code 0 (success)
 ecall # Exit the program
--

Explanation:

1. Data Section (.data):

 fmt_scanf: This is the format string for scanf, specifying that we want to read a 64-bit integer ("%ld").

 fmt_printf: This is the format string for printf, specifying that we want to print a 64-bit integer with a
message ("You entered: %ld\n").

 number: This reserves 8 bytes of memory (64 bits) to store the integer input from the user.

2. Text Section (.text):

 Step 1: scanf call:

 Load the format string for scanf into register a0 (first argument).

 Load the address of the variable number (where the input will be stored) into register a1 (second
argument).

 Call the scanf function using the call scanf instruction. This reads a 64-bit integer from the
user and stores it in the memory location pointed to by number.

 Step 2: printf call:

 Load the format string for printf into register a0 (first argument).

 Load the value of the number variable from memory into register a1 (second argument).

 Call the printf function using the call printf instruction to print the message and the
integer value.

 Step 3: Exit the Program:

 After printing the integer, the program exits using the exit syscall (93).

To do:
Analyze the code. Assemble with gcc
$ gcc scanf_and_printf.s -nostartfiles -o scanf_and_printf
$./scanf_and_printf
21
You entered: 21

1.4 Assembly multiple files (u_mult.s and
scanf_and_printf.s)
Below is a simple main program in RISC-V assembly that calls the previously defined multiply_unsigned
function to multiply two unsigned integers. The main program sets up the arguments, calls the function, and then
makes use of a simple mechanism (like storing the result in memory) to verify that the multiplication works
correctly.

Assumptions

 The multiply_unsigned function is defined in the same file or linked appropriately.

 We use registers a0 and a1 to pass arguments to the function and a0 to receive the result, following
RISC-V calling conventions.

 The main program multiplies two unsigned integers: 6 and 7.

 .data
result: .word 0 # Reserve space to store the result of the multiplication

 .text
 .globl _start

Main Program
_start:
 .option norelax
 la gp, __global_pointer$
 # Load values to multiply into a0 and a1
 li a0, 6 # Load the first operand (multiplicand) into a0
 li a1, 7 # Load the second operand (multiplier) into a1
 # Call the multiply_unsigned function
 jal ra, multiply_unsigned
 # Store the result in memory for verification
 la t0, result # Load address of result into t0
 sw a0, 0(t0) # Store the result (in a0) into the memory location
 # Exit the program
 li a7, 93 # Load the exit ecall code (93) into a7
 ecall # Make the exit ecall to terminate the program

multiply_unsigned:
 li t0, 0 # Initialize result to 0 (stored in t0)
 li t1, 1 # Mask to test each bit of the multiplier
loop:
 and t2, a1, t1 # Check if the current bit of the multiplier is set
 beq t2, zero, skip_add # If the bit is not set, skip the addition
 add t0, t0, a0 # Add the multiplicand to the result
skip_add:
 sll a0, a0, 1 # Shift the multiplicand left by 1 (multiplying by 2)
 srl a1, a1, 1 # Shift the multiplier right by 1 to process the next bit
 bnez a1, loop # If the multiplier is not zero, continue the loop
 mv a0, t0 # Move the result from t0 to a0 (return value)
 ret # Return to caller

Explanation

1. Data Section:

 result: .word 0: Reserves a word of space to store the result of the multiplication for
verification.

2. Text Section (_start):

 _start is the entry point of the program, equivalent to main() in high-level languages.

 Load Arguments:

 li a0, 6: Loads the value 6 into register a0.

 li a1, 7: Loads the value 7 into register a1.

 Call the Multiply Function:

 jal ra, multiply_unsigned: Calls the multiply_unsigned function. The
return address is saved in ra.

 Store the Result:

 la t0, result: Loads the address of the result into t0.

 sw a0, 0(t0): Stores the result from a0 into the memory address held by t0.

 Exit Program:

 li a7, 93: Load the exit system call code (93) into a7.

 ecall: Execute the system call to terminate the program.

3. Multiply Function (multiply_unsigned):

 Implements the multiplication using a simple shift-and-add algorithm, as discussed previously.

 Uses addition and shifting operations to compute the product, storing the result in a0.

Key Points

 Calling Convention:

 The function arguments are passed via a0 and a1.

 The result is returned in a0.

 The return address is stored in the ra register.

 Register Usage:

 t0 is used as an accumulator to store the result.

 t1 serves as a mask to check each bit of the multiplier.

 t2 is used for temporary calculations.

 Exiting the Program:

 The exit system call (93) is used to terminate the program after storing the result.

Running the Program

 The code will multiply 6 and 7, resulting in 42.

 The result is stored in the memory location labeled result.

--

To do
Analyze and test the above code.

Use scanf_and_printf.s program and add the call to u_mult() function as external function.

mult_unsigned_fun.s and main_mult_unsigned_fun.s

Add scanf and printf functions to read multipler-multiplicand and print the result.

 .text
 .globl multiply_unsigned

multiply_unsigned:
 li t0, 0 # Initialize result to 0 (stored in t0)
 li t1, 1 # Mask to test each bit of the multiplier
loop:
 and t2, a1, t1 # Check if the current bit of the multiplier is set
 beq t2, zero, skip_add # If the bit is not set, skip the addition
 add t0, t0, a0 # Add the multiplicand to the result
skip_add:
 sll a0, a0, 1 # Shift the multiplicand left by 1 (multiplying by 2)
 srl a1, a1, 1 # Shift the multiplier right by 1 to process the next bit
 bnez a1, loop # If the multiplier is not zero, continue the loop
 mv a0, t0 # Move the result from t0 to a0 (return value)
 ret # Return to caller
--

 .data
 fmt_scanf: .asciz "%ld" # Format string for scanf (reading a long integer)
 fmt_printf: .asciz "Product is: %ld\n" # Format string for printf
 multiplier: .quad 0 # Reserve space for a 64-bit integer
 multiplicand: .quad 0 # Reserve space for a 64-bit integer
 result: .quad 0 # Reserve space for a 64-bit integer
 .text
 .globl _start
 .extern u_mult

_start:
 .option norelax
 la gp, __global_pointer$
 # Step 1: Read two integers from the user using scanf
 # Load the address of the format string ("%ld") into a0 (first argument for scanf)
 la a0, fmt_scanf # First argument for scanf (the format string)
 # Load the address of the variable 'multiplier' into a1 (second argument for scanf)

 la a1, multiplier # Second argument for scanf (address of the variable)
 # Call scanf
 call scanf # Use the provided scanf function to read input
 la a0, fmt_scanf # First argument for scanf (the format string)
 # Load the address of the variable 'multiplicand' into a1 (second argument for scanf)
 la a1, multiplicand # Second argument for scanf (address of the variable)
 # Call scanf
 call scanf # Use the provided scanf function to read input
 la t1, multiplier
 ld a0, 0(t1)
 la t1, multiplicand
 ld a1, 0(t1)
 call u_mult
 la t1, result
 sd a0, 0(t1) # load number - result
 mv a1, a0
 # Print the integer using printf
 # Load the address of the printf format string ("Product is: %ld\n") into a0
 la a0, fmt_printf # First argument for printf (format string)
 # Load the value of 'number' into a1 (second argument for printf)
 # Call printf
 call printf # Use the provided printf function to print output
 # Step 3: Exit the program
 li a7, 93 # syscall number for exit (in RV64)
 li a0, 0 # exit code 0 (success)
 ecall # Exit the program

Assembly and execute the program:

musepi@musepipro:~/RVLabs/RVPLabs/lab1$ gcc u_mult.s scanf_u_mult_printf.s -nostartfiles -o
scanf_u_mult_printf
musepi@musepipro:~/RVLabs/RVPLabs/lab1$./scanf_u_mult_printf
4
6
Product is: 24

1.5 Power function with simple multiplication
Below we show RISC-V assembly function to calculate the power function using multiplication instructions.
The function computes pow = a^b using the mul instruction, which is part of the RISC-V M-extension for
multiplication.
--
 .text
 .globl u_power

Function: u_power
Description:
Computes the value a^b using a loop and the mul instruction.
Arguments:
a0: The base (a)
a1: The exponent (b)
Returns:
a0: The result of a^b

u_power:
 li t0, 1 # Initialize result to 1 (t0 will hold the result)
 # Loop while exponent (a1) > 0
power_loop:
 beq a1, zero, power_end # If exponent is 0, end the loop
 # Multiply t0 by a0
 mul t0, t0, a0 # t0 = t0 * a0
 # Decrement the exponent
 addi a1, a1, -1 # Decrement a1 (exponent) by 1
 # Repeat the loop
 j power_loop # Jump back to start of loop
power_end:
 mv a0, t0 # Move the final result to a0 (return value)
 ret # Return to caller
--

Explanation

1. Initialization:

 li t0, 1: Load the value 1 into register t0. This is the initial value of the result because
anything raised to the power of 0 is 1.

 Why initialize with 1?: Starting with 1 ensures that the multiplication does not accidentally
result in 0 if the base (a0) is multiplied with an uninitialized or zero value.

2. Exponent Zero Check:

 beq a1, zero, power_end: If the exponent (a1) is 0, the function directly skips to
power_end, and the result (1) is returned.

3. Power Loop (power_loop):

 The function uses a loop to multiply the result (t0) by the base (a0) until the exponent (a1)
reaches zero.

 Multiplication Step:

 mul t0, t0, a0: Multiply t0 by a0. Initially, t0 is 1, so the first iteration of the loop
sets t0 to the value of the base (a0). For subsequent iterations, t0 continues
accumulating the result.

 Decrement Exponent:

 addi a1, a1, -1: Decrement the value in a1 by 1. This reduces the exponent on
each loop iteration.

 Loop Condition:

 bnez a1, power_loop: If the value in a1 is not zero (a1 != 0), the loop continues.

4. Return Result (power_end):

 mv a0, t0: Move the value from t0 to a0. This is because a0 is the register used to return
the result in RISC-V calling conventions.

 ret: Return from the function to the caller.

Key Details

Multiplication Instruction (mul):

 The mul instruction is used to multiply the base (a0) by the accumulated result (t0) in each
iteration. This is efficient compared to manually using addition and shifts.

Register Usage:

 a0: Holds the base value (a) and returns the result.

 a1: Holds the exponent value (b).

 t0: Holds the running result of the power calculation.

 The use of temporary registers like t0 helps avoid overwriting input values and allows for
iterative accumulation.

Edge Cases:

 Exponent = 0: The function checks if the exponent (a1) is 0 at the start and directly returns 1
if true.

 Exponent > 0: The function uses a loop to multiply until the exponent (a1) becomes 0.

--
To do:
Analyze the code with its explanation.
Write scanf_u_power_printf.s program, compile and test it.

musepi@musepipro:~/RVLabs/RVPLabs/lab1$ gcc u_power.s scanf_u_power_printf.s -nostartfiles -o
scanf_u_power_printf
musepi@musepipro:~/RVLabs/RVPLabs/lab1$./scanf_u_power_printf
4
4
Power is: 256

1.6 Power function with Exponentiation and Squaring
Below is the RISC-V assembly function that calculates the power of a number using the Exponentiation by
Squaring method. This method is more efficient than a simple iterative multiplication approach, especially for
larger exponents, as it reduces the number of multiplication operations required.

1.6.1 Exponentiation by Squaring
Exponentiation by squaring is based on the mathematical observation:

 If b is even: ab=(ab/2)2

 If b is odd: ab=a×ab−1

This approach significantly reduces the number of multiplications required for large exponents, by taking
advantage of squaring whenever possible.
--
 .text
 .globl es_power

Function: power
Description:
Computes the value a^b using exponentiation by squaring and the mul instruction.
Arguments:
a0: The base (a)
a1: The exponent (b)
Returns:
a0: The result of a^b

es_power:
 li t0, 1 # Initialize result to 1 (t0 will hold the final result)
 # Check if the exponent is zero
 beq a1, zero, power_end # If exponent is 0, skip to the end (result is 1)
power_loop:
 andi t1, a1, 1 # Check if the current exponent is odd (t1 = a1 & 1)
 beq t1, zero, skip_mul # If t1 is 0, skip multiplication (even exponent)
 # If exponent is odd, multiply result by base
 mul t0, t0, a0 # t0 = t0 * a0
skip_mul:
 mul a0, a0, a0 # Square the base: a0 = a0 * a0
 srl a1, a1, 1 # Divide the exponent by 2: a1 = a1 >> 1
 bnez a1, power_loop # If exponent is not zero, continue the loop
power_end:
 mv a0, t0 # Move the final result to a0 (return value)
 ret # Return to caller
--

To do
Integrate the above “power” functions into main program with scanf and printf functions.

--
 .data
 fmt_scanf: .asciz "%u" # Format string for scanf (reading a long integer)
 fmt_printf: .asciz "Power (a^b) is: %u\n" # Format string for printf
 result: .word 0 # Reserve space to store the result of the multiplication
 base: .word 0 # Reserve space to store the result of the multiplication
 exponent: .word 0 # Reserve space to store the result of the multiplication
 .text
 .globl _start
 .extern power
 .extern power_sq
Main Program
_start:
 .option norelax
 la gp, __global_pointer$
 # Load the address of the format string ("%ld") into a0 (first argument for scanf)
 la a0, fmt_scanf # First argument for scanf (the format string)
 la a1, base # Second argument for scanf (address of the variable)
 call scanf
 la a0, fmt_scanf # First argument for scanf (the format string)
 la a1, exponent # Second argument for scanf (address of the variable)
 call scanf
 la t1, base
 lw a0, 0(t1)
 la t1, exponent
 lw a1, 0(t1)
 # Call the”power” functions
 # call power
 call es_power
 mv t0, a0
 # Load the address of the printf format string ("You entered: %ld\n") into a0

 la a0, fmt_printf # First argument for printf (format string)
 mv a1, t0 # Load the product value
 # Call printf
 call printf # Use the provided printf function to print output
 # Exit the program
 li a7, 93 # Load the exit ecall code (93) into a7
 ecall # Make the exit ecall to terminate the program
--

To do
Compile and execute the above program.

musepi@musepipro:~/RVLabs/RVPLabs/lab1$ gcc es_power.s scanf_es_power_printf.s -
nostartfiles -o scanf_es_power_printf
musepi@musepipro:~/RVLabs/RVPLabs/lab1$./scanf_es_power_printf
4
4
Power is: 256

1.7 Factorial function – iterative method
The following is a RISC-V assembly function to calculate the factorial of an integer using an iterative method
and multiplication instructions. The factorial function computes:

n!=n×(n−1)×(n−2)×…×1

The iterative approach starts from 1 and multiplies up to n to compute the factorial value.

 .text
 .globl factorial
Function: factorial
Description:
Computes the factorial of a given unsigned integer n using an iterative method.
Arguments:
a0: The input number n
Returns:
a0: The result of n!

factorial:
 li t0, 1 # Initialize result to 1 (t0 will hold the factorial value)
 # Check if n is zero or one (0! and 1! are both 1)
 beq a0, t1, factorial_end # If a0 (n) <= 1, skip to the end (result is 1)
factorial_loop:
 mul t0, t0, a0 # t0 = t0 * a0 (multiply the current result by n)
 addi a0, a0, -1 # a0 = a0 - 1 (decrement n by 1)
 bnez a0, factorial_loop # If a0 != 0, continue looping
factorial_end:
 mv a0, t0 # Move the final result to a0 (return value)
 ret # Return to caller

Explanation

1. Initialization:

 Set result to 1:

 li t0, 1: The initial result is set to 1 in t0, since the factorial calculation always
starts with 1.

2. Check for Base Case (0! or 1!):

 ble a0, t1, factorial_end: If a0 (the input n) is less than or equal to 1, the factorial
value is 1. In this case, the function directly jumps to factorial_end.

3. Factorial Loop (factorial_loop):

 Multiplication Step:

 mul t0, t0, a0: Multiply the current value of t0 by the current value of a0. This
accumulates the result.

 Decrement a0:

 addi a0, a0, -1: Decrement the value of a0 by 1 to proceed to the next iteration.

 Loop Condition:

 bnez a0, factorial_loop: Continue the loop if a0 is not 0.

4. Return the Result (factorial_end):

 mv a0, t0: Move the final result (t0) to a0 to be returned to the caller.

 ret: Return from the function.

Example of Factorial Calculation

Let's take the example of calculating 5!:

 Initialization:

 t0 (result) = 1

 a0 (input n) = 5

 Loop Iterations:

 Iteration 1:

 Multiply: t0 = 1 * 5 = 5

 Decrement: a0 = 5 - 1 = 4

 Iteration 2:

 Multiply: t0 = 5 * 4 = 20

 Decrement: a0 = 4 - 1 = 3

 Iteration 3:

 Multiply: t0 = 20 * 3 = 60

 Decrement: a0 = 3 - 1 = 2

 Iteration 4:

 Multiply: t0 = 60 * 2 = 120

 Decrement: a0 = 2 - 1 = 1

 Iteration 5:

 Multiply: t0 = 120 * 1 = 120

 Decrement: a0 = 1 - 1 = 0

 Result: The loop ends when a0 becomes 0, and t0 holds the final result of 120.

Key Details

1. Edge Case Handling:

 0! and 1!: The factorial of 0 and 1 is 1. The ble (branch if less than or equal) instruction
ensures that the function immediately returns 1 for these values without entering the loop.

2. Register Usage:

 a0: Initially holds the input n and returns the final factorial value.

 t0: Holds the running result of the factorial calculation.

 This approach minimizes register usage, making it straightforward and efficient.

To do:
Analyze the above code. Compile and execute it:

musepi@musepipro:~/RVLabs/RVPLabs/lab1$ gcc factorial.s scanf_factorial_printf.s -nostartfiles -o
scanf_factorial_printf
musepi@musepipro:~/RVLabs/RVPLabs/lab1$./scanf_factorial_printf
6

Factorial (a!) is: 720
--

1.8 Factorial function – recursive method
Below is a RISC-V assembly function to calculate the factorial of an integer using a recursive method and
multiplication instructions. In a recursive implementation of the factorial function:

n!=n×(n−1)!
With base cases:

 0!=1

 1!=1

Important Considerations

 This recursive method makes use of the call stack to store intermediate values.

 Each recursive call reduces n by 1 until reaching the base case (n = 0 or n = 1).

--
 .section .text
 .globl factorial_rec

Function to calculate factorial recursively for RV64
factorial_rec:
 # Base Case: if (n == 0) return 1
 addi t0, a0, 0 # Copy a0 to t0 (n to t0)
 beqz t0, factorial_base # If t0 == 0, jump to base case
 # Recursive Case: n * factorial(n-1)
 addi sp, sp, -32 # Allocate space on the stack (RV64 uses 8-byte alignment)
 sd ra, 24(sp) # Save return address on the stack
 sd a0, 16(sp) # Save n (a0) on the stack
 addi a0, a0, -1 # Calculate n - 1
 jal ra, factorial_rec # Recursive call: factorial(n-1)
 # Multiply result by n (saved on stack)
 ld t1, 16(sp) # Load saved n from stack
 mul a0, a0, t1 # a0 = a0 * t1 (factorial(n-1) * n)
 ld ra, 24(sp) # Restore return address
 addi sp, sp, 32 # Deallocate space from the stack
 jr ra # Return to caller
factorial_base:
 # Base Case: return 1
 li a0, 1 # a0 = 1 (factorial(0) = 1)
 jr ra # Return to caller
--

Explanation

1. Base Case Check:

 Set t0 = 1:

 li t0, 1: Set t0 to 1 to use it as a reference for the base case.

 Branch if Less Than or Equal (ble):

 ble a0, t0, factorial_end: If n (a0) is less than or equal to 1, skip the
recursive call and return 1.

2. Recursive Case:

 Stack Allocation:

 addi sp, sp, -32: Allocate space on the stack to store the return address (8 bytes
for RV64).

 sd ra, 24(sp): Store the return address (ra) on the stack so that it can be restored
after the recursive call.

 Recursive Call Preparation:

 addi a0, a0, -1: Decrement the value of n by 1 in preparation for the recursive
call.

 jal ra, factorial_rec: Make the recursive call to factorial_rec(n - 1).
The return address will be stored in ra.

 Restoring Stack and Multiplying:

 ld ra, 24(sp): Load the saved return address from the stack to ra.

 addi sp, sp, 32: Restore the stack pointer (sp) to its previous value by
deallocating the 8 bytes used for storing ra.

 Multiplication:

 mul a0, a0, t1: Multiply the current value of n (original value of a0) by the
result of factorial_rec(n - 1), which is in t1.

3. Return to Caller:

 jr: Return to the caller, using the restored return address in ra.

--

To do
Analyze the above code.

Write test program for factorial functions with scanf and printf functions.

 .data
 fmt_scanf: .asciz "%u" # Format string for scanf (reading a long integer)
 fmt_printf: .asciz "Factorial (a!) is: %u\n" # Format string for printf
 result: .word 0 # Reserve space to store the result of the multiplication
 base: .word 0 # Reserve space to store the result of the multiplication
 .text
 .globl _start
 .extern factorial
 .extern factorial_rec
Main Program
_start:
 .option norelax
 la gp, __global_pointer$
 # Load the address of the format string ("%ld") into a0 (first argument for scanf)
 la a0, fmt_scanf # First argument for scanf (the format string)
 la a1, base # Second argument for scanf (address of the variable)
 call scanf
 la t1, base
 lw a0, 0(t1)
 call factorial
 #call factorial_rec
 mv t0, a0
 # Load the address of the printf format string ("You entered: %ld\n") into a0
 la a0, fmt_printf # First argument for printf (format string)
 mv a1, t0 # Load the product value
 # Call printf
 call printf # Use the provided printf function to print output
 # Exit the program
 li a7, 93 # Load the exit ecall code (93) into a7
 ecall # Make the exit ecall to terminate the program
--

To do
Analyze the use of stack (RV64) with then, compile and execute the program.

 addi sp, sp, -32 # Allocate space on the stack (RV64 uses 8-byte alignment)
 sd ra, 24(sp) # Save return address on the stack
 sd a0, 16(sp) # Save n (a0) on the stack

musepi@musepipro:~/RVLabs/RVPLabs/lab1$ gcc factorial_rec.s scanf_factorial_printf.s -nostartfiles -
o scanf_factorial_rec_printf
musepi@musepipro:~/RVLabs/RVPLabs/lab1$./scanf_factorial_rec_printf
6
Factorial (a!) is: 720
--

1.9 Circle surface – using floating point extension (F)
Below is a simple RISC-V assembly program for RV64G that calculates the surface area of a circle from a given
radius. The formula for the surface area of a circle is:

Area=π×r2

In this example, we'll assume the value of π as 3.14159265359 and calculate the area using the formula. The
result will be stored in floating-point registers.
--

 .data
radius: .float 5.0 # Radius of the circle, adjust this value as needed
pi: .float 3.1415927 # Approximation of pi in single precision
result: .float 0.0 # Variable to store the result

 .text
 .global _start

_start:
 # Load the radius and pi into floating-point registers
 flw ft0, radius # Load radius (r) into ft0 (single-precision)
 flw ft1, pi # Load pi into ft1 (single-precision)
 # Calculate r^2 (square of the radius)
 fmul.s ft2, ft0, ft0 # ft2 = r * r (single-precision)
 # Calculate area = pi * r^2
 fmul.s ft3, ft1, ft2 # ft3 = pi * (r * r) (single-precision)
 # Store the result back to memory
 fsw ft3, result # Store the result in 'result' (single-precision)
 # Exit the program (using system call for exit)
 li a7, 93 # System call number for exit in RISC-V (64-bit)
 ecall # Exit the program

Explanation:

1. Data Section:

 radius contains the value of the radius of the circle (e.g., 5.0 in this example).

 pi contains the approximation of π (3.14159265359).

 result is where the computed area will be stored.

2. Text Section:

 fld instructions load floating-point numbers (64-bit double) into floating-point registers.

 fmul.d is used to multiply floating-point numbers (double).

 The area is calculated using π×r2 and the result is stored in the result memory location.

 ecall is used to exit the program.

To do
Analyze, assembly and test the program. Add scanf and printf functions.

The following is the modified and completed code:

 .data
fmt_scanf: .asciz "%f" # Format string for scanf (reading a long integer)
radius: .float 10.0 # Radius of the circle, adjust this value as needed
pi: .float 3.1415927 # Approximation of pi in single precision
area: .float 0.0 # Variable to store the result
fmt_printf: .asciz "Surface: %f\n"

 .text
 .global _start

_start:
 .option norelax
 la gp, __global_pointer$
 la a0, fmt_scanf # First argument for scanf (the format string)
 la a1, radius # Second argument for scanf (address of the variable)
 call scanf

Load the radius and pi into floating-point registers
 lla a4 , radius
 flw ft0, 0(a4) # Load radius (r) into ft0 (single-precision)
 lla a5, pi
 flw ft1, 0(a5) # Load pi into ft1 (single-precision)

 # Calculate r^2 (square of the radius)
 fmul.s ft2, ft0, ft0 # ft2 = r * r (single-precision)

 # Calculate area = pi * r^2
 fmul.s ft3, ft1, ft2 # ft3 = pi * (r * r) (single-precision)

 # Store the result back to memory
 lla a4, area
 fsw ft3, 0(a4) # Store the result in 'result' (single-precision)

 fcvt.d.s ft3, ft3
 fmv.x.d a1, ft3
 la a0, fmt_printf
 call printf

 # Exit the program (using system call for exit)
 li a7, 93 # System call number for exit in RISC-V (64-bit)
 ecall # Exit the program

Explanation

The instruction fcvt.d.s ft3,ft3 in RISC-V performs a floating-point conversion from a single-
precision (32-bit) floating-point value to a double-precision (64-bit) floating-point value.

Breakdown of the instruction:

 fcvt.d.s: This is the RISC-V floating-point conversion instruction that converts a value from single-
precision (32-bit) floating-point (denoted by .s) to double-precision (64-bit) floating-point (denoted
by .d).

 ft3: This is both the source and destination floating-point register. In this case, the source register
contains a single-precision value, and the destination will contain the converted double-precision
value.

Compilation and execution:

musepi@musepipro:~/RVLabs/RVPLabs/lab1$ gcc circle_surface_all.s -nostartfiles -o circle_surface_all
musepi@musepipro:~/RVLabs/RVPLabs/lab1$./circle_surface_all
5
Surface: 78.539818

1.10 Vector add program with V extension instructions
Our RISC-V board integrates X60 SoC from SpacemiT. This SoC implements standard V (vector) extension
operating on 256-bit vectors. It means that we can operate in parallel on 8 32-bit data (integer, floating point) or
even on 32 8-bit data.

The following is an assembly program for RISC-V RV64 with Vector Extension (RVV) to add two vectors with 8
elements each, where each element is a 32-bit integer. The program will load the vectors into vector registers,
perform the addition using vector instructions, and store the result in memory.

 .section .data
vector_a:
 .word 1, 2, 3, 4, 5, 6, 7, 8 # First input vector with 8 elements (32-bit integers)

vector_b:
 .word 8, 7, 6, 5, 4, 3, 2, 1 # Second input vector with 8 elements (32-bit integers)

result_vector:
 .space 32 # Space to store the result (8 elements * 4 bytes)

 .section .text
 .globl _start
_start:
 # Set up the vector length to 8 elements (each 32-bit wide)
 li t0, 8 # Set vl (vector length) to 8 elements
 vsetvli t0, t0, e32, m1 # Set vector length (VL) to 8 elements, 32-bit wide
 # Load vector_a into vector register v1
 la t1, vector_a # Load address of vector_a into t1
 vle32.v v1,0(t1) # Load 8 elements (32-bit each) from vector_a into v1
 # Load vector_b into vector register v2
 la t2, vector_b # Load address of vector_b into t2
 vle32.v v2,0(t2) # Load 8 elements (32-bit each) from vector_b into v2
 # Perform vector addition: v3 = v1 + v2
 vadd.vv v3, v1, v2 # Add vectors in v1 and v2, store result in v3
 # Store the result vector from v3 into memory
 la t3, result_vector # Load address of result_vector into t3
 vse32.v v3,0(t3) # Store the result (32-bit elements) from v3 into memory
 # Exit the program
 li a0, 0 # Exit code 0
 li a7, 93 # Syscall number for exit
 ecall # Make the system call

Explanation:

1. Data Section:

 vector_a and vector_b contain two input vectors, each with 8 elements of 32-bit integers.

 result_vector is reserved to store the result, with 32 bytes of space (8 elements × 4 bytes
each).

2. Main Program:

 Vector Length Setup:

 The vsetvli instruction sets the vector length (vl) to 8 elements, where each
element is 32 bits wide (e32). m1 indicates single-width elements.

 Vector Load:

 The vle32.v instruction loads 8 elements (32-bit integers) from vector_a and
vector_b into vector registers v1 and v2.

 Vector Addition:

 The vadd.vv instruction performs element-wise addition of the two vectors stored in
v1 and v2, and stores the result in v3.

 Vector Store:

 The vse32.v instruction stores the result from v3 (which contains the 8 element-wise
sums) into the memory location pointed to by result_vector.

3. Program Exit:

 After the addition is complete, the program exits using the exit system call with exit code 0.

To do
The following, is corrected, code that must be assembled with (V) architectural extension.

Analyze, compile and execute the example. Note that we have added printf instruction to output the twice the
four elements of the result vector.

 .data
vector1: .word 1, 2, 3, 4, 5, 6, 7, 8 # First 8-word vector
vector2: .word 1, 2, 3, 4, 5, 6, 7, 8 # Second 8-word vector
result: .space 32 # Space for the result (8 x 4 bytes)
result_msg:
 .string "%d\n" # Format string for result
format_string1:
 .string "4 values [0-3]: %d,%d,%d,%d\n" # Format string to print an integer with newline
format_string2:
 .string "4 values [4-7]: %d,%d,%d,%d\n" # Format string to print an integer with newline

 .text
 .global _start

_start:
 .option norelax
 la gp, __global_pointer$
 # Set up vector length register(VLEN = 8 elements, each 32 bits)
 li t0, 8 # vector length is 8
 vsetvli t0,t0,e32,m1 # vector length for 32-bit elements, one operation per element
 # Load the vectors into vector registers
 la t1, vector1 # Load address of vector1 into t1
 vle32.v v0,0(t1) # Load 8-word vector1 into vector register v0
 la t2, vector2 # Load address of vector2 into t2
 vle32.v v1,0(t2) # Load 8-word vector2 into vector register v1
 # Perform vector addition
 vadd.vv v2, v0, v1 # v2 = v0 + v1 (element-wise vector addition)
 # Store the result back to memory
 la t3, result # Load address of result into t3
 vse32.v v2,0(t3) # Store the result from vector register v2 into memory
 lw a1,0(t3) # load last element to print
 lw a2,4(t3) # load last element to print
 lw a3,8(t3) # load last element to print
 lw a4,12(t3) # load last element to print
 la a0, format_string1
 call printf
 la t3, result # Load address of result into t3
 lw a1,16(t3) # load last element to print
 lw a2,20(t3) # load last element to print
 lw a3,24(t3) # load last element to print
 lw a4,28(t3) # load last element to print
 la a0, format_string2
 call printf

 # Exit the program (using system call for exit)
 li a0,0
 li a7, 93 # System call number for exit in RISC-V (64-bit)
 ecall # Exit the program
--

Note the use of -march=rv64gcv option to call the vector extension !

$gcc vector_add_printf.s -nostartfiles -march=rv64gcv -o vector_add_printf
$./vector_add_printf
4 values: 2,4,6,8
4 values: 10,12,14,16
--

	PLab1
	1.0 Simple programs with core instruction set (I)
	1.0.1 Program sections
	1.0.2 Assembly program function system calls
	1.1 Our first program with compilation : HelloRiscV.s
	1.2 Unsigned multiplication with addition and shift instructions
	1.3 Assembly with scanf and printf (C functions)
	1.4 Assembly multiple files (u_mult.s and scanf_and_printf.s)
	1.5 Power function with simple multiplication
	1.6 Power function with Exponentiation and Squaring
	1.6.1 Exponentiation by Squaring

	1.7 Factorial function – iterative method
	1.8 Factorial function – recursive method
	1.9 Circle surface – using floating point extension (F)
	1.10 Vector add program with V extension instructions

