Programming and Modeling
RISC-V on RISC-V architecture

Przemyslaw Bakowski

(gdb) -disassemble /r-&_start, -+569

Dump - of -assembler code: from-0x100e8 to-0x10120:
< 00002197 -
= 83818193
- 00300313 -
- 00400393 -
- 00100e13-
- 00038863 - -
- 026e0e33- -
£££38393. .
fe039¢ce3-
00001297
01428293 -
01c2a023- -
05400893 - -
00000073

-0x00000000000100e8
-0x00000000000100ec
-0x00000000000100£0
-0x00000000000100£4
-0x00000000000100£8
-0x00000000000100£c

-0x0000000000010104
-0x0000000000010108

-0x000000000001010¢c -

-0x0000000000010110

-0x0000000000010114-

-0x0000000000010118

-0x000000000001011c-
End-of -assembler dump.

-<_start+0>:
-<_start+4>:

-<_start+8>:

-<_start+12>:
c<_start+16>:
-<_start+20>:
-0x0000000000010100-

<loop_0+0>:
-<loop_0+4>:
-<loop_0+8>:
<end_0+0>:
-<end_0+4>:
<end_0+8>:

-<end_0+12>:
<end_0+16>:
1

-
-
-
-
>
>
a

Tine
k=1
inst[31:0) =0
pcl31:0] =
take =o
§_al31:0) =
1_alu_opl3:0] =3

0x0370x04

// M Extension Operations
'OP_ALU_ MUL:
"OP_ALU_MULH: o_c=(($signed(i_a) *$signed(i_b))>>32);

o_c=i_a * i_b;

// Multiplication High (signed)

"OP_ALU_DIV: o_c=(i_b!=0)7?$signed(i_a)/$signed(i_b):0;
// Division (signed)

"OP_ALU_DIVU: o_c=(i_b!=0)?i_a/i_b:0;

// Division Unsigned

" OP_ALU_REM:
// Remainder (signed)
"OP_ALU_REMU: o_c=(i_b!=0)?i_a%i_b:i_a;

o_c=(i_b!=0)?$signed(i_a)%$signed(i_b) :i_a;

// Remainder Unsigned
default: o_c = 0;

endcase

Instruction
memory

sign_extender

control

Decoding: Extending: *
MUL, MULH, MUL, MULH,
DIV, DIVU, DIV, DIVU,
REM, REMU REM, REMU

Lab 0
Introduction

RISC-V is gaining popularity in digital systems due to its simplicity, efficiency, and open-source
nature. Understanding RISC-V architecture prepares students for working with these systems. Many
companies seek professionals who understand this architecture for its roles in processor design,
embedded systems development, 10T systems development, and related fields.

Teaching RISC-V architecture via assembly-level programming and RTL modeling allows
students to learn core concepts effectively and apply them in practical projects.

This book presents the didactic and development platform to teach and model RISC-V ISA.

Our method is two-fold (software/hardware) and self-contained (modeling RISC-V on RISC-V).
The platform itself is largely affordable and running exclusively on open source software, modeling
tools included.

The initial didactical content is built from several Programming Labs (Plabs), and Modeling Labs
(MLabs).

PLabs start with simple examples involving arithmetical instructions and input/output operations. We
also delve, with the help of the debugger, into the binary representations to understand the instruction
formats and build binary code snippets.

MLabs start with a short introduction to Verilog HDL. With the following MLabs we study simple
RISC-V architecture, first to model RV32l-subset with R-type instructions then to model full RV32I
plus M subsets. Then, running on the RISC-V platform, we inject the generated binaries into the
Verilog model. As such the platform is open for further experimentation with RISC-V ISA based
programming and modeling.

Along with the programming and the modeling processes we specify ChatGPT prompts to generate
assembly code snippets and the Verilog modules providing test bench codes.

Our two-sided, software-hardware, approach to teach the RISC-V ISA requires the use of an
actual hardware platform with RISC-V processor SoCs.

There are several RISC-V implementations commercially available. The most affordable and
complete are the boards integrating SpacemiT X60 Intelligence Core.

X60 complies with RVA22 profile and implements 256-bit RVV1.0 standard. MUSE Pi Pro is the
reference board integrating X60 SoC.

The board operates under Debian like Bianbu OS.

The following picture shows architectural block scheme of X60 and the MUSE Pi Pro board.
Below are essential features of X60:

Comphance with RISC-V 64GCVB and RVA22 standards

Each core has 32KB L1-1 cache and 32KB L1-D cache

Each cluster contains 512KB L2 cache

Cluster 0 integrates 512KB TCM (Tight-Coupled Memory) for Al extension

L1 cache supports MESI consistency protocol, instead L2 cache supports MOESI
consistency protocol

Vector extension: RVV1.0 with VLEN 256/128-bit and x2 execution width

Al customized instructions explored and implemented in Cluster 0

Support for CLINT and PLIC with a total of 256 interrupts

Support for RISC-V performance PMU

Support for SV39 virtual memory

Support for 32 PMP entries adhering to RISC-V security framework

Support for RISC-V debug framework

Support for the following extensions:

Programming and Modeling RISC-V on RISC-V

RV64I M A F D C V and many Binary extension plus Al customized instructions

Clusterd Cluster! RCPU Subsystem
e [
rscv RISCY [Reanso]
64GCVB Core | Fru_|] 64GCVE Core I_‘Fuzc || Power
Ay Audio Subsystem
=] " £
32K D-Gache ApeL - wrs | []
]| s] [
I~
[smasmion] ||| Sz | ||| ey e e | et
o | - |
4% |
e
I Coherent interconnect Bus | {oact || [oxrrom] | LINE-OUT
Tnternal Memory AON PMU
) f
SR g
Figh Speed /0 Subsystem
System Control System US830 Comb X1 PCle21 (1lane)
— ; Py or USB30 (DRD)
N T
Efuse e o -~ Serdes ¥2PClez1 (2lane)
Py or x1 PCle21 (Tlane)
P21 2
==l [reata)
Spinlock WD0G - - PO 2 Serdes ¥2PCle2.1 (2lane)
PHY orx1 Pelez 1 (1lane)
Management Unit [Fsensor |
L PLLs Main PMU
= Clock & Reset
24M image Processing
KIALOSG Crystal o] WP CST
DEC
Tow Speed 10 Subsystem CEEE
SPI ENC MIPI CSI
UART 2051 25010 3x128/PCM (2lane
|—+{12C]
IRAX [ocuser J[wex][2ocewm] Display Controllers
S0 Card WP
= [owm][_=ec][zmoro | 0
1920 pivel bufer
OFU o
‘Connectivity Subsystem i
— (‘!m;uelhuﬂerj |' TR
S MMCS 1 (4-lane)
|—~zT]
[Cwsezoote | [_vsszoore | External ‘Graphics Procasaing Uni
E— Memory
US520 HUB USB20 Host Interface | DOR ™
100/1000M PHY contreler o Ea sk
2GMAC per
Ethemet ‘Vulkan 1.2 iF7i
NOR Flash ase | ‘ DOR PHY J

ifs

Mult-format Decade
H.264/H.265 Dec(dK)
H.264/H.265 Enc(4K)

Crypto
TRNG/AES/RSA/ECC/SHAZ/HMAC
SM2/SM3/SM4

32-bit LPDDRA4/LPDOR4X
@2666MT

Fig 0.1 Architectural block scheme of X60 SoC including two RV64 clusters.

Muse Pi Pro shown in the following picture is a feature-packed, credit card-sized SBC powered by
the SpacemIT M1 octa-core 64-bit RISC-V Al SoC with a 2 TOPS NPU and equipped with up to
16GB LPDDR4x and 128GB eMMC flash.

The single board computer features gigabit Ethernet and a WiFi 6 + Bluetooth 5.3 module for
connectivity, HDMI and MIPI DSI display interfaces, two MIPI CSl interfaces, a 3.5mm audio jack,
four USB 3.0 ports, an M.2 socket for an NVMe SSD or wireless module, a mini PCIE socket for WiFi
and 4G LTE/5G cellular connector, and a 40-pin GP1O header for expansion. That’s quite a lot of
features for such a compact board.

Fig 0.2 MUSE Pi Pro board from SpacemiT integrating X60 SoC

Programming and Modeling RISC-V on RISC-V

Other boards with SpacemiT X60 SoC

For our laboratory exercises and examples, we utilized the MUSE Pi Pro development board.
However, these experiments can also be conducted on other compatible hardware platforms
including:

e Banana Pi BPI-F3

e OrangePi RV2

Note: The OrangePi RV2 entry-level pricing begins at $30-40 (or €30-40), varying according to
RAM configuration.

Book organization

The book is organized in two principal parts:
1. Programming Labs - PLabs
2. Modeling Labs - MLabs

Both parts are built from series of Labs. The last PLab provides the output - binary codes to be
used in the following MLabs .

Resources

You will find the RISC-V assembly codes and Verilog models in
github.com/smartcomputerlab/Programming.and.Modeling.RISC-V.on.RISC-V
repository

Programming and Modeling RISC-V on RISC-V

Programming Labs

Programming RISC-V with assembly language offers several key advantages, especially in scenarios
where control, optimization, and hardware awareness are critical. Below are some of the primary
benefits:

1. Fine-Grained Control of Hardware

e Direct Access to CPU Features: RISC-V assembly allows developers to directly interact
with processor instructions, registers, memory, and I/O devices. This level of control is
essential for hardware-level tasks such as interrupt handling, device drivers, or manipulating
specific hardware peripherals.

e Custom Instruction Set Extensions: RISC-V allows for user-defined custom instructions,
so writing in assembly helps exploit these extensions effectively when needed for specialized
tasks.

2. Performance Optimization

e Manual Optimization: Assembly language gives developers the ability to optimize their
code for speed, size, or power efficiency by manually tuning instructions, avoiding
unnecessary overhead, and making decisions about which operations are faster for a given
processor.

¢ Instruction-Level Parallelism: Developers can control how instructions are scheduled,
potentially reducing instruction stalls, pipeline hazards, and maximizing the use of the CPU’s
pipelines.

e Efficient Use of Memory: Assembly allows developers to minimize memory usage, a critical
factor for embedded systems or resource-constrained environments like micro-controllers.

3 Small Code Size

¢ Minimal Overhead: Writing in assembly produces minimal overhead since high-level
language constructs like loops, conditionals, and function calls are replaced with direct
machine instructions. This is particularly useful in systems with limited memory (e.g.,
embedded systems).

¢ Precise Control of Memory Layout: In assembly, the programmer has direct control over
how data and code are laid out in memory, allowing for optimized and compact memory
usage.

4 Embedded Systems and Real-Time Applications
e Low-Level Access: Assembly language is often used in embedded and real-time systems
where low-level control is essential, such as controlling specific peripherals, real-time
performance tuning, and interrupt handling.
e Deterministic Execution: In real-time systems, knowing the exact execution time of
instructions is important. Assembly provides a clear understanding of how long each
instruction will take, ensuring real-time constraints are met.

Writing in assembly helps developers gain a deep understanding of the underlying RISC-V
architecture, including how memory is accessed, how instructions are executed, and how
control flow is managed.

By learning to write in assembly, programmers also develop insights into what compilers do behind
the scenes, allowing for better high-level code optimization and debugging.

Programming and Modeling RISC-V on RISC-V

RISC-V: base assembly instruction set

The RISC-V base integer instruction set, often referred to as the "I" (Integer) instruction set, includes a
small but complete set of instructions necessary for general-purpose computing. This set is part of the RV32I
and RV64l instruction sets, with RV32I being a 32-bit variant and RV64I being a 64-bit variant. These
instructions include basic arithmetic, logical, control, memory access, and system instructions.

In our labs we use X60 based development board (SBC). X60 integrates two cluster of RV64 processors.
Here's an overview of the basic instructions in the RISC-V "I" instruction set, categorized by their purpose.

Note the typical RISC type architecture separation between the:

e arithmetical/logical instructions

e memory load/save instructions
and

e control jump/branch instructions

1 Arithmetic Instructions
These instructions perform integer arithmetic operations.
® add rd, rsl, rs2— Addtworegisters (rd = rsl + rs2).
® addi rd, rsl, imm — Addimmediate (rd = rsl + imm).
® sub rd, rsl, rs2 — Subtract(rd = rsl - rs2).
® lui rd, imm — Load upperimmediate (rd = imm << 12).
® auipc rd, imm— Add upperimmediateto PC(rd = PC + (imm << 12)).

2 Logical Instructions

These instructions perform bitwise logical operations.
® and rd, rsl, rs2 —Bitwise AND (rd = rsl & rs2).
® andi rd, rsl, imm — Bitwise AND withimmediate (rd = rsl & imm).
® or rd, rsl, rs2 —BitwiseOR (rd = rsl | rs2).
® ori rd, rsl, imm — Bitwise OR with immediate (rd =
® xor rd, rsl, rs2—Bitwise XOR (xrd = rsl * rs2).
® xori rd, rsl, imm— Bitwise XOR with immediate (rd = rs1 * imm).

rsl | imm).

3. Shift Instructions
These instructions perform left or right shifts.
® sl11 rd, rsl, rs2 — Shiftleftlogical (rd = rsl << rs2).
®* sl11i rd, rsl, imm— Shiftleftlogicalimmediate (rd = rsl << imm).
* srl rd, rsl, rs2 — Shiftrightlogical (rd = rsl >> rs2).
® srli rd, rsl, imm — Shiftright logical immediate (rd = rsl >> imm).
® sra rd, rsl, rs2 — Shiftrightarithmetic (rd = rs1 >> rs2).
® srai rd, rsl, imm— Shiftright arithmeticimmediate (rd = rsl1 >> imm).
4 Comparison Instructions
These instructions compare values in registers and set the destination register to 1 if the comparison is
true, otherwise set it to 0.
® slt rd, rsl, rs2—Setiflessthan(rd = (rsl < rs2)).
® slti rd, rsl, imm — Setifless thanimmediate (rd = (rsl < imm)).
® sltu rd, rsl, rs2— Setiflessthan (unsigned) (rd = (rsl < rs2) unsigned).
® sltiu rd, rsl, imm — Setiflessthanimmediate (unsigned) (rd = (rsl < imm) unsigned).
5 Memory Access Instructions
These instructions load data from memory into registers or store data from registers into memory.
® 1w rd, imm(rsl) — Loadword (rd = Mem[rsl + imm]).
® 1h rd, imm(rsl) — Load halfword.

Programming and Modeling RISC-V on RISC-V

® 1b rd, imm(rsl) — Load byte.
®* 1lbu rd, imm(rsl) — Load byte unsigned.
® 1lhu rd, imm(rsl) — Load halfword unsigned.
® sw rs2, imm(rsl) — Store word (Mem[rsl + imm] = rs2).
® sh rs2, imm(rsl) — Store halfword.
® sb rs2, imm(rsl) — Store byte.
6 Control Transfer Instructions
These instructions control the flow of execution, including conditional branches and unconditional jumps.
® beq rsl, rs2, offset — Branch if equal.
®* bne rsl, rs2, offset — Branchif notequal.
® blt rsl, rs2, offset — Branch if less than (signed).
®* bge rsl, rs2, offset — Branch if greater than or equal (signed).
®* bltu rsl, rs2, offset — Branch if less than (unsigned).
®* bgeu rsl, rs2, offset — Branch if greater than or equal (unsigned).
®* jal rd, offset — Jump and link (used for function calls).
® Jjalr rd, offset(rsl) — Jump and link register.
7 System Instructions
These instructions provide system-level control, including traps and environment calls (for example, for
operating system services).
® ecall — Environment call (used to invoke system services, e.g., syscalls).
* ebreak — Environment break (used for debugging or breakpoints).
8 No-Operation Instruction
This instruction does nothing and is often used for padding.
®* nop — Nooperation (addi x0, %0, 0 iscommonly used as nop).

9 Example Program: Sum of Two Numbers
Here is a simple RISC-V assembly program that adds two numbers and stores the result in a register.

.text
.globl _start

_start:
Load two numbers into registers
1i a0, 10 # Load immediate value 10 into register a0
1i al, 20 # Load immediate value 20 into register al

Perform addition

add a2, a0, al # a2 = a0 + al (10 + 20 = 30)
Exit the program using ecall

1i a7, 93 # Syscall number for exit
ecall # Make system call

Programming and Modeling RISC-V on RISC-V

Basic instruction formats
Below we provide a simplified visual representation of the basic RISC-V instruction formats for the |
(Integer) instruction set. These formats are R-type, I-type, S-type, B-type, U-type, and J-type.

Each format specifies how to structure the 32-bit instruction word in RISC-V assembly. These formats
are not explicitly “visible” in assembly code but there they provide some insight into the capacities of
the register block and the encoding schemes.

The implementation of these elements are essential for Verilog models studied in the second part of
this book.

1. R-Type Format (Used for register-register operations)

31 - 25 24 - 20 19 - 15 14 - 12 1 - 7 6 -0
funct? rs2 rsl funct3 rd opcode

e opcode: Operation code (e.g., 0110011 for R-type).

e rd: Destination register.

e funct3: Specifies the operation within the opcode.

e rsl: Source register 1.

e rs2: Source register 2.

e funct7: Additional bits to distinguish operations.

2. I-Type Format (Used for immediate instructions, loads)
31 - 20 19 - 15 14 - 12 11 - 7 6 -0
imm[11:0] rsl funct3 rd opcode

opcode: Operation code (e.g., 0000011 for loads).
rd: Destination register.

funct3: Specifies the operation.

rsl: Source register.

imm[11:0]: 12-bit immediate value.

3. S-Type Format (Used for stores)
31 - 25 24 - 20 19 - 15 14 - 12 11 - 7 6 -0
imm[11:5] rs2 rsl funct3 imm[4:0] opcode

opcode: Operation code (e.g., 0100011 for stores).
funct3: Specifies the operation.

rsl: Base register for address calculation.

rs2: Source register to store.

imm[11:5] & imm[4:0]: Split 12-bitimmediate value.

4. B-Type Format (Used for branches)

31 30 - 25 24 - 20 19 - 15 14 - 12 11 10 - 7 6 -0
imm[12] imm[10:5] rs2 rsl funct3 imm[4:1] imm[11] opcode

e opcode: Operation code (e.g., 1100011 for branches).

e funct3: Specifies the branch type.

e rsl & rs2:Registers to compare.

e imm[12], imm[10:5], imm[4:1], imm[11]: Splitimmediate value for target address.

10

Programming and Modeling RISC-V on RISC-V

5. U-Type Format (Used for upper immediate)
31 - 12 11 - 7 6 -0
imm[31:12] rd opcode

* opcode: Operation code (e.g., 0010111 for AUIPC).
e rd: Destination register.
e imm[31:12]:20-bitimmediate value (upper 20 bits).

6. J-Type Format (Used for jumps)
31 30 - 21 20 19 - 12 1 - 7 6 -0
imm[20] imm[10:1] imm[11] imm[19:12] rd opcode

* opcode: Operation code (e.g., 1101111 for jumps).
e rd: Destination register.

e imm[20], imm[10:1], imm[11], imm[19:12]: Splitimmediate for target address.

Register Name ABl Mame Description

x0 ZEero Hard-Wired Zero

%1 ra Retun Address

2 sp Stack Pointer

x3 ap Global Pointer

xd tp Thread Pointer

¥B6-x7 12 Temporary Registers

x8 s0ifp Saved Register / Frame Pointer

x9 s1 Saved Register
x10-x11 al-a1 Function Argument / Return Value Registers
x12-x17 az-at Function Argument Registers
x18-x27 s2-311 Saved Registers
X28-x31 t3-16 Temporary Registers

Fig
0.5 RISC-V 32/64 register file: t1,t2, . .,t3-t6 and a0-a7 - user data registers; a0-a7 -
function argument registers, a0, al - return value registers

11

Programming and Modeling RISC-V on RISC-V

Binary codes for basic R-type format - example

Let us take an R-Type format instruction and look at the corresponding binary code. This type of
instruction is used for register-register operations like addition, subtraction, and logical operations. R-
type instructions have six fields in their 32-bit format.

31 - 25 24 - 20 19 - 15 14 - 12 11 - 7 6 -0

funct? rs2 rsl funct3 rd opcode

Here's a breakdown of each field in the R-type format:

opcode (7 bits): Specifies the operation type (e.g., 0110011 for all R-type instructions).
rd (5 bits): The destination register.

funct3 (3 bits): A sub-field of the operation code that helps specify the exact operation.
rsl (5 bits): The first source register.

rs2 (5 bits): The second source register.

funct7 (7 bits): Another sub-field of the operation code for further operation specification.

oghkwn~

Example: Binary Code for ADD and SUB Instructions

For specific operations like ADD and SUB, here’s how the binary fields would look in this format:
e ADD (Addition):
® opcode: 0110011
e funct3:000
e funct7:0000000
e SUB (Subtraction):
® opcode: 0110011
e funct3:000
e funct7:0100000

Example of an ADD Instruction (add x1, x2, x3)
funct7 rs2 rsl funct3 rd opcode

0000000 00011 00010 000 00001 0110011

funct7: 0000000 for ADD
rs2: Register x3 (binary 00011)
rsl: Register x2 (binary 00010)
funct3: 000 for ADD

rd: Register x1 (binary 00001)
opcode: 0110011

Here’s how we can write a simple "HelloWorld" program in RISC-V assembly and compile it to
run on a RISC-V system.
Then we will explain the differences between compiling with gec and as.

12

Programming and Modeling RISC-V on RISC-V

RISC-V Assembly Code for "HelloWorld"

RISC-V assembly doesn’t have built-in support for printing to standard output, so this example relies on making a
system call to handle printing. Here’s the code:

.section .data
message:
.string "HelloWorld\n"
.section .text
.globl _start
_start:
Load the address of our message into al
la al, message
Load the file descriptor for stdout (1) into a0l

1li a0, O

Load the length of the message (11 characters) into a2
1i a2, 11

Load the syscall number for write (64) into a7
1i a7, 64

Make the syscall to write

ecall

Exit the program

1i a7, 93 # Syscall number for exit

1i a0, 0 # Exit code O

ecall

This program:
1. Loads the address of the message string into register a0.
2. Sets up the syscall for writing by placing the appropriate syscall number (64 for write) in
a7, the file descriptor (1 for stdout) in a1, and the length of the string in a2.
3. Uses ecall toinvoke the system call to write to the console.
4. Exits the program by invoking the exit syscall.

Compiling with as vs. gcc
1. Compiling with as (Assembler)

e The as command is used as a stand-alone assembler. It takes your RISC-V assembly file
(e.g., helloworld. s) and converts it directly to machine code (an object file,
helloworld.o).

e To produce an executable with as, you need to use the linker 1d after assembly:

as —-o helloworld.o helloworld.s
ld -o helloworld helloworld.o

e This process requires you to handle linking manually. If your assembly code depends on
external libraries or needs startup routines (like _start), you must provide them explicitly.

2. Compiling with gcc
e gccis a higher-level compiler that can handle both C and assembly source files. When you
pass an assembly file to gec, it first assembles it (using as internally) and then links it
automatically.
¢ The advantage of using gee is that it automates linking and includes the standard startup
code and libraries that set up the environment for your program.
You can compile the above assembly code using gec like this:

gcc —nostartfiles -o helloworld helloworld.s

Here, -nostartfiles is used to prevent gcc from adding the default C runtime startup files
(like crt0.0), as we already defined the _start entry point.

13

Programming and Modeling RISC-V on RISC-V

Key Differences between as and gee:

e Manual Linking (as): as only assembles; it doesn’t automatically link. You must use 1d to
produce an executable, making it a more manual process.

e Automatic Linking (gcc): gec automates linking and may add standard C runtime
initialization code unless explicitly suppressed. It handles dependencies on standard
libraries and routines, which can be helpful if you're mixing assembly with C code.

e Error Checking and Libraries: gcc provides more extensive error checking and can link to
the standard C library by default, which is useful if your program depends on functions like
printf.

Important:

Add to protect the data sections:
_start:

.option norelax
la gp, __global_pointers$

.option norelax Tells assembler notto allow linker relaxations. Keeps address loading
full/explicit.

la gp, __global_pointer$
Loads the address of the special global pointer into the gp register.

Note:
the stdout (1) must be initialized in a0, and the string address in al.

Analyze the above code and compile it with gee (without and with —nostartfiles option) and with
as and 1d.

Note the difference of binary code (el£) size, can you explain it ?
—-rwxrwxr-x 1 bako bako 1352 11 A 11 10:48 HelloWorldass
-rwxrwxr-x 1 bako bako 8576 11H 11 10:54 HelloWorldass_gcc
-rwxrwxr-x 1 bako bako 6232 11 H 11 10:55 HelloWorldass_gcc_no

Attention:

In case of use -nostartfiles option we may nave problem with the initialization of global
pointer (gp) address. If we use this flag or simple as and 1d commands we may initialize the global
pointer at the beginning of .text section:

Example:

.section .text
.globl _start
_start:
.option norelax
la gp, __global_pointers$
here starts the program ..

14

	Lab 0
	Introduction
	Other boards with SpacemiT X60 SoC
	Book organization
	Resources

	Programming Labs
	RISC-V: base assembly instruction set
	Basic instruction formats
	1. R-Type Format (Used for register-register operations)
	2. I-Type Format (Used for immediate instructions, loads)
	3. S-Type Format (Used for stores)
	4. B-Type Format (Used for branches)
	Binary codes for basic R-type format - example
	Example: Binary Code for ADD and SUB Instructions
	RISC-V Assembly Code for "HelloWorld"

	Attention:

