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Lab 0 

Introduction
RISC-V is gaining popularity in digital systems due to its simplicity, efficiency, and open-source 
nature. Understanding RISC-V architecture prepares students for working with these systems. Many 
companies seek professionals who understand this architecture for its roles in processor design, 
embedded systems development, IoT systems development, and related fields. 
Teaching RISC-V architecture via assembly-level programming and RTL modeling allows 
students to learn core concepts effectively and apply them in practical projects.

This book presents the didactic and development platform to teach and model RISC-V ISA. 
Our method is two-fold (software/hardware) and self-contained (modeling RISC-V on RISC-V). 
The platform itself is largely affordable and running exclusively on open source software, modeling 
tools included. 

The initial didactical content is built from several Programming Labs (Plabs), and Modeling Labs 
(MLabs). 
PLabs start with simple examples involving arithmetical instructions and input/output operations. We 
also delve, with the help of the debugger, into the binary representations to understand the instruction 
formats and build binary code snippets. 
MLabs start with a short introduction to Verilog HDL. With the following MLabs we study simple 
RISC-V architecture, first to model RV32I-subset with R-type instructions then to model full RV32I 
plus M subsets. Then, running on the RISC-V platform, we inject the generated binaries into the 
Verilog model. As such the platform is open for further experimentation with RISC-V ISA based 
programming and modeling. 

Along with the programming and the modeling processes we specify ChatGPT prompts to generate 
assembly code snippets and the Verilog modules providing test bench codes.

Our two-sided, software-hardware, approach to teach the RISC-V ISA requires the use of an 
actual hardware platform with RISC-V processor SoCs. 
There are several RISC-V implementations commercially available. The most affordable and 
complete are the boards integrating SpacemiT X60 Intelligence Core. 
X60  complies with RVA22 profile and implements 256-bit RVV1.0 standard.  MUSE Pi Pro is the 
reference board integrating X60 SoC.

The board operates under Debian like Bianbu OS.
The following picture shows architectural block scheme of X60 and the MUSE Pi Pro board.
Below are essential features of X60:
Compliance with RISC-V 64GCVB and RVA22 standards

 Each core has 32KB L1-I cache and 32KB L1-D cache
 Each cluster contains 512KB L2 cache
 Cluster 0 integrates 512KB TCM (Tight-Coupled Memory) for AI extension
 L1 cache supports MESI consistency protocol, instead L2 cache supports MOESI 

consistency protocol
 Vector extension: RVV1.0 with VLEN 256/128-bit and x2 execution width
 AI customized instructions explored and implemented in Cluster 0
 Support for CLINT and PLIC with a total of 256 interrupts
 Support for RISC-V performance PMU
 Support for SV39 virtual memory
 Support for 32 PMP entries adhering to RISC-V security framework
 Support for RISC-V debug framework
 Support for the following extensions:
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 RV64I M A F D C V and many Binary extension plus AI customized instructions

Fig 0.1 Architectural block scheme of X60 SoC including two RV64 clusters.

Muse Pi Pro shown in the following picture is a feature-packed, credit card-sized SBC powered by 
the SpacemIT M1 octa-core 64-bit RISC-V AI SoC with a 2 TOPS NPU and equipped with up to 
16GB LPDDR4x and 128GB eMMC flash.
The single board computer features gigabit Ethernet and a WiFi 6 + Bluetooth 5.3 module for 
connectivity, HDMI and MIPI DSI display interfaces, two MIPI CSI interfaces, a 3.5mm audio jack,  
four USB 3.0 ports, an M.2 socket for an NVMe SSD or wireless module, a mini PCIE socket for WiFi 
and 4G LTE/5G cellular connector, and a 40-pin GPIO header for expansion. That’s quite a lot of 
features for such a compact board.

Fig 0.2 MUSE Pi Pro board from SpacemiT integrating X60 SoC

5



Programming and Modeling RISC-V on RISC-V 

Other boards with SpacemiT X60 SoC
For our laboratory exercises and examples, we utilized the MUSE Pi Pro development board. 
However, these experiments can also be conducted on other compatible hardware platforms 
including:

 Banana Pi BPI-F3
 OrangePi RV2

Note: The OrangePi RV2 entry-level pricing begins at $30–40 (or €30–40), varying according to 
RAM configuration.

Book organization
The book is organized in two principal parts:

1. Programming Labs - PLabs
2. Modeling Labs - MLabs

Both parts are built from series of Labs. The last PLab  provides the output – binary codes to be 
used in the following MLabs . 

Resources
You will find the RISC-V assembly codes and Verilog models in 
github.com/smartcomputerlab/Programming.and.Modeling.RISC-V.on.RISC-V 

repository
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Programming Labs 
Programming RISC-V with assembly language offers several key advantages, especially in scenarios 
where control, optimization, and hardware awareness are critical. Below are some of the primary 
benefits:

1. Fine-Grained Control of Hardware
 Direct Access to CPU Features: RISC-V assembly allows developers to directly interact 

with processor instructions, registers, memory, and I/O devices. This level of control is 
essential for hardware-level tasks such as interrupt handling, device drivers, or manipulating 
specific hardware peripherals.

 Custom Instruction Set Extensions: RISC-V allows for user-defined custom instructions, 
so writing in assembly helps exploit these extensions effectively when needed for specialized 
tasks.

2. Performance Optimization
 Manual Optimization: Assembly language gives developers the ability to optimize their 

code for speed, size, or power efficiency by manually tuning instructions, avoiding 
unnecessary overhead, and making decisions about which operations are faster for a given 
processor.

 Instruction-Level Parallelism: Developers can control how instructions are scheduled, 
potentially reducing instruction stalls, pipeline hazards, and maximizing the use of the CPU’s 
pipelines.

 Efficient Use of Memory: Assembly allows developers to minimize memory usage, a critical 
factor for embedded systems or resource-constrained environments like micro-controllers.

3 Small Code Size
 Minimal Overhead: Writing in assembly produces minimal overhead since high-level 

language constructs like loops, conditionals, and function calls are replaced with direct 
machine instructions. This is particularly useful in systems with limited memory (e.g., 
embedded systems).

 Precise Control of Memory Layout: In assembly, the programmer has direct control over 
how data and code are laid out in memory, allowing for optimized and compact memory 
usage.

4 Embedded Systems and Real-Time Applications
 Low-Level Access: Assembly language is often used in embedded and real-time systems 

where low-level control is essential, such as controlling specific peripherals, real-time 
performance tuning, and interrupt handling.

 Deterministic Execution: In real-time systems, knowing the exact execution time of 
instructions is important. Assembly provides a clear understanding of how long each 
instruction will take, ensuring real-time constraints are met.

Writing in assembly helps developers gain a deep understanding of the underlying RISC-V 
architecture, including how memory is accessed, how instructions are executed, and how 
control flow is managed.
By learning to write in assembly, programmers also develop insights into what compilers do behind 
the scenes, allowing for better high-level code optimization and debugging.
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RISC-V: base assembly instruction set 
The RISC-V base integer instruction set, often referred to as the "I" (Integer) instruction set, includes a 
small but complete set of instructions necessary for general-purpose computing. This set is part of the RV32I 
and RV64I instruction sets, with RV32I being a 32-bit variant and RV64I being a 64-bit variant. These 
instructions include basic arithmetic, logical, control, memory access, and system instructions.
In our labs we use X60 based development board (SBC). X60 integrates two cluster of RV64 processors.
Here's an overview of the basic instructions in the RISC-V "I" instruction set, categorized by their purpose.

Note the typical RISC type architecture separation between the:

 arithmetical/logical instructions
 memory load/save instructions

and
 control jump/branch instructions

1 Arithmetic Instructions
These instructions perform integer arithmetic operations.

 add rd, rs1, rs2 — Add two registers (rd = rs1 + rs2).
 addi rd, rs1, imm — Add immediate (rd = rs1 + imm).
 sub rd, rs1, rs2 — Subtract (rd = rs1 - rs2).
 lui rd, imm — Load upper immediate (rd = imm << 12).
 auipc rd, imm — Add upper immediate to PC (rd = PC + (imm << 12)).


2 Logical Instructions
These instructions perform bitwise logical operations.

 and rd, rs1, rs2 — Bitwise AND (rd = rs1 & rs2).
 andi rd, rs1, imm — Bitwise AND with immediate (rd = rs1 & imm).
 or rd, rs1, rs2 — Bitwise OR (rd = rs1 | rs2).
 ori rd, rs1, imm — Bitwise OR with immediate (rd = rs1 | imm).
 xor rd, rs1, rs2 — Bitwise XOR (rd = rs1 ^ rs2).
 xori rd, rs1, imm — Bitwise XOR with immediate (rd = rs1 ^ imm).


3. Shift Instructions
These instructions perform left or right shifts.

 sll rd, rs1, rs2 — Shift left logical (rd = rs1 << rs2).
 slli rd, rs1, imm — Shift left logical immediate (rd = rs1 << imm).
 srl rd, rs1, rs2 — Shift right logical (rd = rs1 >> rs2).
 srli rd, rs1, imm — Shift right logical immediate (rd = rs1 >> imm).
 sra rd, rs1, rs2 — Shift right arithmetic (rd = rs1 >> rs2).
 srai rd, rs1, imm — Shift right arithmetic immediate (rd = rs1 >> imm).

4 Comparison Instructions
These instructions compare values in registers and set the destination register to 1 if the comparison is 
true, otherwise set it to 0.

 slt rd, rs1, rs2 — Set if less than (rd = (rs1 < rs2)).
 slti rd, rs1, imm — Set if less than immediate (rd = (rs1 < imm)).
 sltu rd, rs1, rs2 — Set if less than (unsigned) (rd = (rs1 < rs2) unsigned).
 sltiu rd, rs1, imm — Set if less than immediate (unsigned) (rd = (rs1 < imm) unsigned).

5 Memory Access Instructions
These instructions load data from memory into registers or store data from registers into memory.

 lw rd, imm(rs1) — Load word (rd = Mem[rs1 + imm]).
 lh rd, imm(rs1) — Load halfword.
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 lb rd, imm(rs1) — Load byte.
 lbu rd, imm(rs1) — Load byte unsigned.
 lhu rd, imm(rs1) — Load halfword unsigned.
 sw rs2, imm(rs1) — Store word (Mem[rs1 + imm] = rs2).
 sh rs2, imm(rs1) — Store halfword.
 sb rs2, imm(rs1) — Store byte.

6 Control Transfer Instructions
These instructions control the flow of execution, including conditional branches and unconditional jumps.

 beq rs1, rs2, offset — Branch if equal.
 bne rs1, rs2, offset — Branch if not equal.
 blt rs1, rs2, offset — Branch if less than (signed).
 bge rs1, rs2, offset — Branch if greater than or equal (signed).
 bltu rs1, rs2, offset — Branch if less than (unsigned).
 bgeu rs1, rs2, offset — Branch if greater than or equal (unsigned).
 jal rd, offset — Jump and link (used for function calls).
 jalr rd, offset(rs1) — Jump and link register.

7 System Instructions
These instructions provide system-level control, including traps and environment calls (for example, for 
operating system services).

 ecall — Environment call (used to invoke system services, e.g., syscalls).
 ebreak — Environment break (used for debugging or breakpoints).

8 No-Operation Instruction
This instruction does nothing and is often used for padding.

 nop — No operation (addi x0, x0, 0 is commonly used as nop).

9 Example Program: Sum of Two Numbers
Here is a simple RISC-V assembly program that adds two numbers and stores the result in a register.

    .text
    .globl _start

_start:
    # Load two numbers into registers
    li a0, 10         # Load immediate value 10 into register a0
    li a1, 20         # Load immediate value 20 into register a1
    # Perform addition
    add a2, a0, a1    # a2 = a0 + a1 (10 + 20 = 30)
    # Exit the program using ecall
    li a7, 93         # Syscall number for exit
    ecall             # Make system call
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Basic instruction formats
Below we provide a simplified visual representation of the basic RISC-V instruction formats for the I 
(Integer) instruction set. These formats are R-type, I-type, S-type, B-type, U-type, and J-type. 

Each format specifies how to structure the 32-bit instruction word in RISC-V assembly. These formats 
are not explicitly “visible” in assembly code but there they provide some insight into the capacities of 
the register block and the encoding schemes. 

The implementation of these elements are essential for Verilog models studied in the second part of 
this book.

1. R-Type Format (Used for register-register operations)
31 - 25 24 - 20 19 - 15 14 - 12 11 - 7 6 - 0

funct7 rs2 rs1 funct3 rd opcode

  
 opcode: Operation code (e.g., 0110011 for R-type).
 rd: Destination register.
 funct3: Specifies the operation within the opcode.
 rs1: Source register 1.
 rs2: Source register 2.
 funct7: Additional bits to distinguish operations.

2. I-Type Format (Used for immediate instructions, loads)
31 - 20 19 - 15 14 - 12 11 - 7 6 - 0

imm[11:0] rs1 funct3 rd opcode

 opcode: Operation code (e.g., 0000011 for loads).
 rd: Destination register.
 funct3: Specifies the operation.
 rs1: Source register.
 imm[11:0]: 12-bit immediate value.

3. S-Type Format (Used for stores)
31 - 25 24 - 20 19 - 15 14 - 12 11 - 7 6 - 0

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

 opcode: Operation code (e.g., 0100011 for stores).
 funct3: Specifies the operation.
 rs1: Base register for address calculation.
 rs2: Source register to store.
 imm[11:5] & imm[4:0]: Split 12-bit immediate value.

4. B-Type Format (Used for branches)
31 30 - 25 24 - 20 19 - 15 14 - 12 11 10 - 7 6 - 0

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode

 opcode: Operation code (e.g., 1100011 for branches).
 funct3: Specifies the branch type.
 rs1 & rs2: Registers to compare.
 imm[12], imm[10:5], imm[4:1], imm[11]: Split immediate value for target address.
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5. U-Type Format (Used for upper immediate)
31 - 12 11 - 7 6 - 0

imm[31:12] rd opcode

 opcode: Operation code (e.g., 0010111 for AUIPC).
 rd: Destination register.
 imm[31:12]: 20-bit immediate value (upper 20 bits).

6. J-Type Format (Used for jumps)
31 30 - 21 20 19 - 12 11 - 7 6 - 0

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode

 opcode: Operation code (e.g., 1101111 for jumps).
 rd: Destination register.
 imm[20], imm[10:1], imm[11], imm[19:12]: Split immediate for target address.

Fig 
0.5 RISC-V 32/64 register file: t1,t2,..,t3-t6  and a0-a7 - user data registers; a0-a7 – 
function argument registers, a0,a1 - return value registers
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Binary codes for basic R-type format - example
Let us take an R-Type format instruction and look at the corresponding binary code. This type of 
instruction is used for register-register operations like addition, subtraction, and logical operations. R-
type instructions have six fields in their 32-bit format.

31 - 25 24 - 20 19 - 15 14 - 12 11 - 7 6 - 0

funct7 rs2 rs1 funct3 rd opcode

Here's a breakdown of each field in the R-type format:

1. opcode (7 bits): Specifies the operation type (e.g., 0110011 for all R-type instructions).
2. rd (5 bits): The destination register.
3. funct3 (3 bits): A sub-field of the operation code that helps specify the exact operation.
4. rs1 (5 bits): The first source register.
5. rs2 (5 bits): The second source register.
6. funct7 (7 bits): Another sub-field of the operation code for further operation specification.

Example: Binary Code for ADD and SUB Instructions

For specific operations like ADD and SUB, here’s how the binary fields would look in this format:
 ADD (Addition):

 opcode: 0110011
 funct3: 000
 funct7: 0000000

 SUB (Subtraction):
 opcode: 0110011
 funct3: 000
 funct7: 0100000

Example of an ADD Instruction (add x1, x2, x3)
funct7 rs2 rs1 funct3 rd opcode

0000000 00011 00010 000 00001 0110011

 funct7: 0000000 for ADD
 rs2: Register x3 (binary 00011)
 rs1: Register x2 (binary 00010)
 funct3: 000 for ADD
 rd: Register x1 (binary 00001)
 opcode: 0110011

Here’s how we can write a simple "HelloWorld" program in RISC-V assembly and compile it to 
run on a RISC-V system. 
Then we will explain the differences between compiling with gcc and as.
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RISC-V Assembly Code for "HelloWorld"

RISC-V assembly doesn’t have built-in support for printing to standard output, so this example relies on making a 
system call to handle printing. Here’s the code:
------------------------------------------------------------------------------------------
    .section .data
message:
    .string "HelloWorld\n"
    .section .text
    .globl _start
_start:
    # Load the address of our message into a1
    la a1, message
    # Load the file descriptor for stdout (1) into a0
    li a0, 0
    # Load the length of the message (11 characters) into a2
    li a2, 11
    # Load the syscall number for write (64) into a7
    li a7, 64
    # Make the syscall to write
    ecall
    # Exit the program
    li a7, 93       # Syscall number for exit
    li a0, 0        # Exit code 0
    ecall
--------------------------------------------------------------------------------

This program:
1. Loads the address of the message string into register a0.
2. Sets up the syscall for writing by placing the appropriate syscall number (64 for write) in 

a7, the file descriptor (1 for stdout) in a1, and the length of the string in a2.
3. Uses ecall to invoke the system call to write to the console.
4. Exits the program by invoking the exit syscall.

Compiling with as vs. gcc
1. Compiling with as (Assembler)

 The as command is used as a stand-alone assembler. It takes your RISC-V assembly file 
(e.g., helloworld.s) and converts it directly to machine code (an object file, 
helloworld.o).

 To produce an executable with as, you need to use the linker ld after assembly:
------------------------------------------------------------------------
as -o helloworld.o helloworld.s
ld -o helloworld helloworld.o
------------------------------------------------------------------------

 This process requires you to handle linking manually. If your assembly code depends on 
external libraries or needs startup routines (like _start), you must provide them explicitly.

2. Compiling with gcc
 gcc is a higher-level compiler that can handle both C and assembly source files. When you 

pass an assembly file to gcc, it first assembles it (using as internally) and then links it 
automatically.

 The advantage of using gcc is that it automates linking and includes the standard startup 
code and libraries that set up the environment for your program.

You can compile the above assembly code using gcc like this:
------------------------------------------------------------------------
gcc -nostartfiles -o helloworld helloworld.s

Here, -nostartfiles is used to prevent gcc from adding the default C runtime startup files 
(like crt0.o), as we already defined the _start entry point.
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Key Differences between as and gcc:
 Manual Linking (as): as only assembles; it doesn’t automatically link. You must use ld to 

produce an executable, making it a more manual process.
 Automatic Linking (gcc): gcc automates linking and may add standard C runtime 

initialization code unless explicitly suppressed. It handles dependencies on standard 
libraries and routines, which can be helpful if you're mixing assembly with C code.

 Error Checking and Libraries: gcc provides more extensive error checking and can link to 
the standard C library by default, which is useful if your program depends on functions like 
printf.

--------------------------------------------------------------------------------------------------------------------------------------------------
Important:
Add to protect the data sections:

_start:
    .option norelax
    la gp, __global_pointer$

.option norelax  Tells assembler not to allow linker relaxations. Keeps address loading 
full/explicit.
la gp, __global_pointer$ 
Loads the address of the special global pointer into the gp register.

Note:
the stdout (1) must be initialized in a0, and the string address in a1.

Analyze the above code and compile it with gcc (without and with -nostartfiles option) and with 
as and ld.

Note the difference of binary code (elf) size, can you explain it ?
-rwxrwxr-x 1 bako bako 1352 11  月 11 10:48 HelloWorldass

-rwxrwxr-x 1 bako bako 8576 11  月 11 10:54 HelloWorldass_gcc

-rwxrwxr-x 1 bako bako 6232 11  月 11 10:55 HelloWorldass_gcc_no

Attention:
In case of use –nostartfiles option we may nave problem with the initialization of  global 
pointer (gp) address. If we use this flag or simple as and ld commands we may initialize the global 
pointer at the beginning of .text section:

Example:

    .section .text
    .globl _start
_start:
    .option norelax
    la gp, __global_pointer$
..  # here starts the program ..
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