
MLab1
Modeling and simulate with Verilog HDL

In this part of the book we show how to build and use Verilog HDL language to model simple RISC-V
architectures at RTL (Register Transfer Level) and how to copile and run these models on our RISC-V based
boards.

Verilog HDL is widely used to model RISC-V architectures because it is a hardware-centric language with
excellent tool support, simulation capability, and fine-grained control of RTL structures. It enables accurate
modeling of pipelined, parallel architectures like RISC-V cores and fits seamlessly into ASIC/FPGA design flows.

Before the introduction of RISC-V models written in Verilog we provide an initial modeling lab to introduce the
essential elements of Verilog HDL. We also show how to compile the hardware description into simulation model
and how to run the model with the associated output information for graphic waveforms presentation.

--

Key Features of Verilog HDL

1. Hardware Modeling:

 Verilog allows you to describe circuits at various abstraction levels:

 Gate level: Describes the digital circuit using basic logic gates (AND, OR, etc.).

 Register-transfer level (RTL): Describes how data is transferred between registers
and how operations are performed on data.

 Behavioral level: Focuses on the behavior of the circuit, often resembling high-level
programming.

2. Concurrency:

 Unlike traditional programming languages that execute instructions sequentially, Verilog models
the concurrent nature of hardware, where multiple parts of the circuit can operate
simultaneously.



3. Simulation and Synthesis:

 Simulation: Verilog can be used to simulate how a digital circuit behaves before physically
implementing it. You can create testbenches to test the functionality of your design.

 Synthesis: Verilog descriptions can be synthesized into gate-level representations and
eventually into hardware, such as FPGAs or ASICs.

4. Modules:

 A Verilog design is composed of modules, which are basic building blocks. Each module can
represent a component or an entire system. Modules have inputs, outputs, and internal logic that
define the behavior of the system.

5. Structural and Behavioral Descriptions:

 Structural modeling: Describes the hardware design by connecting components (e.g., gates
or submodules) together.

 Behavioral modeling: Describes the functionality of the system without worrying about how it is
connected at a low level. It focuses on "what" the circuit does rather than "how" it's done.

Example Verilog Code
Simple 2-to-1 Multiplexer (MUX):

module mux2to1 (
 input wire a, // Input A
 input wire b, // Input B
 input wire sel, // Select line
 output wire y // Output Y
);
assign y = (sel) ? b : a; // If sel = 1, choose B; otherwise, choose A
endmodule
--

In this example:

 A simple 2-to-1 multiplexer is described in Verilog.

 sel is the select signal that controls which input (a or b) is passed permanently (assign) to the
output y.

The following is testbench module:

tb_mux2to1.vt

for the above mux2to1.v module

module tb_mux2to1;
 reg a, b, sel;
 wire y;

 mux2to1 uut (// module instantiation
 .a(a),
 .b(b),
 .sel(sel),
 .y(y)
);
 initial begin // initial process
 // Test case 1: sel = 0, a = 0, b = 1
 a = 0; b = 1; sel = 0;
 #10; // Wait 10 time units
 $display("Test 1: y = %b", y); // Should print y = 0
 // Test case 2: sel = 1, a = 0, b = 1
 sel = 1;
 #10;
 $display("Test 2: y = %b", y); // Should print y = 1
 $finish; // End simulation
 end
endmodule
--

In this testbench:
 The multiplexer is instantiated and tested with different input combinations.
 The sequential steps are separated by 10 time units (#10)
 The results (register contents) are prited with $display instruction

Installing compilation and simulation tools
1. Install Icarus Verilog:

Icarus Verilog (iverilog) is a Verilog simulation and synthesis tool.

 On Linux (Ubuntu), you can install it using:
sudo apt-get install iverilog

2. Install GTKWave:

GTKWave is a waveform viewer to visualize simulation results.
sudo apt-get install gtkwave

--

To do
Analyze the presented modules uut (unit under test) and the test bench codes.

You can compile both modules together to get simulation model with iverilog and run the model with vvp
command as presented below:

musepi@musepipro:~/RVLabs/RVMLabs/lab1$ iverilog mux2to1.v tb_mux2to1.v -o tb_mux2to1
musepi@musepipro:~/RVLabs/RVMLabs/lab1$ vvp tb_mux2to1
Test 1: y = 0
Test 2: y = 1
tb_mux2to1.v:20: $finish called at 20 (1s)

Note that iverilog can be installed with simple command

sudo apt install iverilog

--

1.1 Unit Under Test and the corresponding testbench

// simple_module.v
module simple_module(input a, input b, output y);
 assign y = a & b; // AND gate
endmodule
--
Testbench file: tb_simple_module.v :
--
// tb_simple_module.v
`timescale 1ns/1ps
module tb_simple_module;
 reg a; // Inputs
 reg b;
 wire y; // Output
 // Instantiate the design under test (DUT)
 simple_module dut (.a(a), .b(b), .y(y));
 // Testbench process
 initial begin
 // Initialize Inputs
 a = 0;
 b = 0;
 // Simulation sequence
 #10 a = 1;
 #10 b = 1;
 #10 a = 0;
 #10 b = 0;
 #10 a = 1; b = 1;
 #10;
 // End the simulation
 $finish;
 end
 // Dumping the waveform for GTKWave
 initial begin
 $dumpfile("tb_simple_module.vcd"); // Create the VCD file
 $dumpvars(0, tb_simple_module); // Dump variables
 end
endmodule
--

To do
Compile and Simulate with Icarus Verilog and GTKWave

Once you have your Verilog module and testbench ready, follow these steps to simulate:

Compile the Verilog files:
$ iverilog simple_module.v tb_simple_module.v -o tb_simple_module

This will compile the Verilog files and create an output binary named simple_tb.

Run the simulation:
vvp tb_simple_module

This command runs the compiled Verilog simulation model using vvp, the Icarus Verilog simulation runtime.

If the testbench has waveform dumping enabled ($dumpfile and $dumpvars), this will create a
tb_simple_module.vcd file.

Use GTKWave:

 Once GTKWave opens, you should see the hierarchy of your Verilog module and signals in the SST
(Signal Selection Tree) panel on the left.

 Select the signals (e.g., a, b, and y) and drag them into the waveform panel to visualize their
behavior over time.

 The waveform display will show how the inputs (a and b) and output (y) change over time as per the
simulation.

--
$ iverilog simple_module.v tb_simple_module.v -o tb_simple_module
$ vvp tb_simple_module
VCD info: dumpfile tb_simple_module.vcd opened for output.
tb_simple_module.v:22: $finish called at 60000 (1ps)
musepi@musepipro:~/RVLabs/RVMLabs/lab1$ ls -l

total 28

-rw-rw-r-- 1 bako bako 245 11月 13 10:20 mux2to1.v
-rw-rw-r-- 1 bako bako 115 11月 13 10:31 simple_module.v
-rwxr-xr-x 1 bako bako 1875 11月 13 10:23 tb_mux2to1
-rw-rw-r-- 1 bako bako 523 11月 13 10:21 tb_mux2to1.v
-rwxr-xr-x 1 bako bako 2189 11月 13 10:39 tb_simple_module
-rw-rw-r-- 1 bako bako 726 11月 13 10:39 tb_simple_module.v
-rw-rw-r-- 1 bako bako 471 11月 13 10:39 tb_simple_module.vcd
--

To do
Analyze the presented modules uut (unit under test) and the test bench codes. You can compile both modules
together to get simulation model with iverilog and run the model with vvp command .
$ iverilog simple_module.v tb_simple_module.v -o tb_simple_module
$ vvp tb_simple_module

Analyze the waveforms generated in tb_simple_module.vcd
gtkwave tb_simple_module.vcd

Fig
1.1

GTKWave diagram for simple simple_module.v

1.2 Simple ALU module and testbench
Below is a simple 32-bit ALU (Arithmetic Logic Unit) model written in Verilog HDL. This ALU can perform basic arithmetic and
logic operations on 32-bit inputs, such as addition, subtraction, AND, OR, XOR, and shift operations.

ALU Model in Verilog HDL

module ALU(
 input [31:0] A, // First 32-bit operand
 input [31:0] B, // Second 32-bit operand
 input [3:0] ALUOp, // 4-bit control signal to choose operation
 output reg [31:0] Result, // 32-bit output result
 output Zero // Zero flag to indicate if result is zero
);

 always @(*) begin
 case (ALUOp)
 4'b0000: Result = A + B; // Addition
 4'b0001: Result = A - B; // Subtraction
 4'b0010: Result = A & B; // Bitwise AND
 4'b0011: Result = A | B; // Bitwise OR
 4'b0100: Result = A ^ B; // Bitwise XOR
 4'b0101: Result = A << B[4:0]; // Logical shift left
 4'b0110: Result = A >> B[4:0]; // Logical shift right
 4'b0111: Result = $signed(A) >>> B[4:0]; // Arithmetic shift right
 default: Result = 32'b0; // Default: Zero result
 endcase
 end
 // Zero flag: Set if result is zero
 assign Zero = (Result == 32'b0) ? 1'b1 : 1'b0;

endmodule
--

Explanation
 Inputs:

 A and B: The two 32-bit input operands.

 ALUOp: A 4-bit control signal to select the operation. This control signal determines which operation the
ALU will perform.

 Outputs:

 Result: The 32-bit output result of the ALU operation.

 Zero: A flag indicating if the result of the operation is zero (1 if Result is zero, otherwise 0).

 Operations:

 Addition (ALUOp = 4'b0000): Adds the two operands.

 Subtraction (ALUOp = 4'b0001): Subtracts the second operand from the first.

 Bitwise AND (ALUOp = 4'b0010): Performs a bitwise AND between the two operands.

 Bitwise OR (ALUOp = 4'b0011): Performs a bitwise OR between the two operands.

 Bitwise XOR (ALUOp = 4'b0100): Performs a bitwise XOR between the two operands.

 Logical Shift Left (ALUOp = 4'b0101): Shifts the first operand left by the number of positions specified
in the lower 5 bits of the second operand.

 Logical Shift Right (ALUOp = 4'b0110): Shifts the first operand right logically by the number of
positions specified in the lower 5 bits of the second operand.

 Arithmetic Shift Right (ALUOp = 4'b0111): Shifts the first operand right arithmetically (preserving the
sign bit).

 Zero Flag: The Zero output flag is set to 1 if the result is zero, and 0 otherwise. This flag is typically used in
conditional branching to detect zero results.

--
Example Simulation with testbench

You can simulate this ALU with a simple testbench to see the results for various operations.
--
module tb_ALU; // Testbench module
 reg [31:0] A, B;
 reg [3:0] ALUOp;
 wire [31:0] Result;
 wire Zero;
 // Instantiate the ALU
 ALU uut (
 .A(A),
 .B(B),
 .ALUOp(ALUOp),
 .Result(Result),

 .Zero(Zero)
);

 initial begin
 // Test addition
 A = 32'h00000005; B = 32'h00000003; ALUOp = 4'b0000;
 #10;
 $display("Addition: A = %h, B = %h, Result = %h, Zero = %b", A, B, Result, Zero);
 // Test subtraction
 A = 32'h00000005; B = 32'h00000005; ALUOp = 4'b0001;
 #10;
 $display("Subtraction: A= %h, B= %h,Result= %h, Zero= %b", A, B, Result, Zero);
 // Test AND
 A = 32'h0000000F; B = 32'h000000F0; ALUOp = 4'b0010;
 #10;
 $display("AND: A = %h, B = %h, Result = %h, Zero = %b", A, B, Result, Zero);
 // Test OR
 A = 32'h0000000F; B = 32'h000000F0; ALUOp = 4'b0011;
 #10;
 $display("OR: A = %h, B = %h, Result = %h, Zero = %b", A, B, Result, Zero);
 // Test XOR
 A = 32'h0000000F; B = 32'h000000F0; ALUOp = 4'b0100;
 #10;
 $display("XOR: A = %h, B = %h, Result = %h, Zero = %b", A, B, Result, Zero);
 // Test shift left
 A = 32'h00000001; B = 32'h00000004; ALUOp = 4'b0101;
 #10;
 $display("Shift Left: A = %h, B = %h, Result = %h, Zero = %b", A, B, Result, Zero);
 // Test shift right
 A = 32'h00000010; B = 32'h00000002; ALUOp = 4'b0110;
 #10;
 $display("Shift Right: A= %h, B= %h, Result= %h, Zero = %b", A, B, Result, Zero);
 // Test arithmetic shift right
 A = 32'h80000000; B = 32'h00000002; ALUOp = 4'b0111;
 #10;
 $display("Arithmetic Shift Right:A=%h,B=%h,Result=%h,Zero= %b",A,B,Result,Zero);
 $finish;
 end
 initial begin
 $dumpfile("tb_ALU.vcd"); // Create the VCD
 $dumpvars(0, tb_ALU); // Dump variables
 end
endmodule
--

Explanation of the Testbench

 The testbench drives different values to the inputs of the ALU and selects various operations using the
ALUOp signal.

 The input values, the result and the zero flag are displayed for each test case using $display().

 The testbench checks basic operations such as addition, subtraction, logical operations (AND, OR,
XOR), and shift operations.

To do
Compile (iverilog) and execute (vvp):
$ vi ALU.v
$ vi tb_ALU.v
$ iverilog ALU.v tb_ALU.v -o tb_ALU
$ vvp tb_ALU
Addition: A = 00000005, B = 00000003, Result = 00000008, Zero = 0
Subtraction: A = 00000005, B = 00000005, Result = 00000000, Zero = 1
AND: A = 0000000f, B = 000000f0, Result = 00000000, Zero = 1
OR: A = 0000000f, B = 000000f0, Result = 000000ff, Zero = 0
XOR: A = 0000000f, B = 000000f0, Result = 000000ff, Zero = 0
Shift Left: A = 00000001, B = 00000004, Result = 00000010, Zero = 0
Shift Right: A = 00000010, B = 00000002, Result = 00000004, Zero = 0
Arithmetic Shift Right:A = 80000000,B = 00000002,Result = e0000000,Zero = 0

$gtkwave tb_ALU.vcd

Fig 1.2
GTKWave
waveforms
for
tb_ALU.v

1.3 Simple RAM module and testbench
The following is a simple RAM memory model written in Verilog HDL. This RAM model uses 32-bit
words and allows you to perform read and write operations.
--

module RAM (
 input clk, // Clock signal
 input we, // Write enable (1 for write, 0 for read)
 input [7:0] addr, // 8-bit address (for 256 words)
 input [31:0] data_in, // 32-bit input data for writing
 output reg [31:0] data_out // 32-bit output data for reading
);

 // Declare the RAM memory (256 words of 32-bit data)
 reg [31:0] memory [255:0];
 // Read/Write logic
 always @(posedge clk) begin
 if (we) begin
 // Write operation: If write enable is high, store data_in at addr
 memory[addr] <= data_in;
 end else begin
 // Read operation: If write enable is low, output data from addr
 data_out <= memory[addr];
 end
 end

endmodule
--

Explanation of the Model

 Inputs:

 clk: Clock signal used to synchronize the memory operations.

 we: Write enable signal. When we is high (1), the memory performs a write
operation. When we is low (0), the memory performs a read operation.

 addr: The 8-bit address input, allowing the RAM to access up to 256 memory
locations.

 data_in: The 32-bit input data, used when writing data to memory.

 Output:

 data_out: The 32-bit output data, used when reading data from memory.

 Memory Array:

 The memory array memory is a 256-word RAM, where each word is 32 bits wide.
This is modeled using reg[31:0] memory[255:0].

 Behavior:

 On the positive edge of the clock, the RAM performs either a write or a read
operation depending on the value of the we signal.

 If we is high, the data_in is written to the memory location specified by addr.

 If we is low, the data_out will hold the value stored in the memory location specified
by addr.

Testbench for the RAM Model

Below is a simple testbench that simulates read and write operations on the RAM model.

--
module tb_RAM;
 reg clk; // Clock signal
 reg we; // Write enable signal

9

Programming and Modeling RISC-V on RISC-V

 reg [7:0] addr; // 8-bit address for memory
 reg [31:0] data_in; // 32-bit input data for write
 wire [31:0] data_out; // 32-bit output data for read
 // Instantiate the RAM module
 RAM uut (
 .clk(clk),
 .we(we),
 .addr(addr),
 .data_in(data_in),
 .data_out(data_out)
);
 // Clock generator: Toggle clk every 5 time units
 always #5 clk = ~clk;
 initial begin
 // Initialize signals
 clk = 0;
 we = 0;
 addr = 0;
 data_in = 0;
 // Write data to address 0
 #10;
 we = 1;
 addr = 8'h00; // Address 0
 data_in = 32'hDEADBEEF; // Data to write
 #10;
 // Write data to address 1
 we = 1;
 addr = 8'h01; // Address 1
 data_in = 32'hCAFEBABE; // Data to write
 #10;
 // Read data from address 0
 we = 0;
 addr = 8'h00; // Address 0
 #10;
 $display("Read Address 0: Data = %h", data_out);
 // Read data from address 1
 we = 0;
 addr = 8'h01; // Address 1
 #10;
 $display("Read Address 1: Data = %h", data_out);
 // Finish simulation
 $finish;
 end
 initial begin
 $dumpfile("tb_RAM.vcd"); // Create the VCD file
 $dumpvars(0, tb_RAM); // Dump variables
 end
endmodule
--

Explanation of the Testbench

 The testbench initializes the clock (clk) and sets it to toggle every 5 time units.

 It performs the following operations:

1. Writes 32'hDEADBEEF to address 0x00.

2. Writes 32'hCAFEBABE to address 0x01.

3. Reads from address 0x00 and prints the value to the console.

4. Reads from address 0x01 and prints the value to the console.

 After these operations, the simulation stops.

Expected Output

The testbench will print the following output after simulating the read operations:
Read Address 0: Data = DEADBEEF
Read Address 1: Data = CAFEBABE

To do
Compilation and execution:

10

Programming and Modeling RISC-V on RISC-V

musepi@musepipro:~/Design/labgen$ iverilog RAM.v tb_RAM.v -o tb_RAM
musepi@musepipro:~/Design/labgen$ vvp tb_RAM
VCD info: dumpfile tb_RAM.vcd opened for output.
Read Address 0: Data = deadbeef
Read Address 1: Data = cafebabe
simple_RAM_tb.v:54: $finish called at 50 (1s)
gtkwave tb_RAM.vcd

Fig 2.3 GTKWave diagram for simple RAM memory run.

Summary
This 32-bit RAM model allows for read and write operations with a 32-bit data width and an 8-bit
address space, allowing for up to 256 memory locations.

 The testbench demonstrates basic read and write operations on the RAM, showing how to
interact with the memory and verify the results.

 You can extend or modify this RAM model for larger or more complex systems by adjusting
the address width or adding additional control logic.

11

	MLab1
	Modeling and simulate with Verilog HDL
	Example Verilog Code
	Installing compilation and simulation tools
	1.1 Unit Under Test and the corresponding testbench
	1.2 Simple ALU module and testbench
	1.3 Simple RAM module and testbench

