Lab 5: SIMD
Vector programming for image processing (2)

In this lab, we continue developing and testing vector programming examples applied to images. We begin with
image rotation for both grayscale and color images. Next, we demonstrate image creation through two simple
examples: drawing squares and lines. Finally, we present two examples of dynamic (animated) displays using
OpenGL.

5.1 Image rotation

5.1.1 Image rotation - grayscale
The following example shows simple image rotation by 90 degrees.

5.1.1.1 Assembly code

.text

.globl rotate90_gray_rvv

.align 2
rotate90_gray_rvv:

1i t6, 512 #N

1i t0, O #r=0

mv t5, té # stride bytes for vsse8.v: N
1: beq t0, t6, 9f # if (r == N) return

srow = src + r*N

mul tl, t0, té6

add t2, a0, t1 # t2 = srow

dst_ptr = dst + (N-1 - r) (starting at column 0)

addi t3, t6, -1 # N-1

sub t3, t3, t0 # N-1-r

add t3, al, t3 # t3 = &dst[0*N + (N-1-r)]

mv t4, té6 # remaining columns in this row: rem = N
2: beqz t4, 8f # done this row?

Set vl (elements) for this chunk (SEW=8)
vsetvli tl, t4, e8, ml, ta, ma #tl =vl
mv a2, ti1 # save vl
Load 'vl' bytes from source row

vlie8.v vO0, (t2)

Strided store into destination column: stride == N bytes
vsse8.v v0, (t3), t5
Advance pointers: srow += vl; dst_ptr += v1*N; rem -= vl
add t2, t2, a2 # srow += vl
mul tl, a2, té6 # tl = v1*N
add t3, t3, tl1 # dst_ptr += v1*N
sub t4, t4, a2 # rem -= vl
3j 2b
8: addi t0, t0, 1 # r++
3j 1b
9: ret

5.1.1.2 Test C code

#include <opencv2/opencv.hpp>

#include <stdint.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#define N 512 // image is 512x512

extern "C" void rotate90_gray_rvv(const uint8_t *src, uint8_t *dst);

// "namespace" ns_: plain C-style prefix
// 90° clockwise: (r, ¢) -> (¢, N-1l-r)
//

static void rotate90_cw_u8_c(const uint8_t *src, uint8_t *dst) {
for (int r = 0; r < N; ++r) {
const uint8_t *srow = src + r * N;
for (int ¢ = 0; ¢ < N; ++c) {
dst[c * N+ (N -1 - r)] = srow[c];
}

}

int main(int argc, char **argv) {
if (argc !'= 4)
printf ("Usage: %s <grayscale_512x512.png> <rot_image_ass.png> <rot_image_c>\n", argv[0]);
return 1;

const char *in_path = argv[l];
const char *out_path_ass = argv[2];
const char *out_path_c = argv[3];
clock_t startv, endv;
clock_t start, end;
double elapsed_secv;
double elapsed_sec;
// Load as 8-bit grayscale with OpenCV
cv::Mat img = cv::imread(in_path, cv::IMREAD_GRAYSCALE) ;
if (img.empty()) {
printf ("Error: could not open image: %s\n", in_path);

return 1;
}
if (img.cols != N || img.rows != N)
printf ("Error: expected %dx%d, got %dx%d\n", N, N, img.cols, img.rows);
return 1;
}
if (img.type() != CV_8UC1l) {
printf ("Error: expected 8-bit single-channel image.\n");
return 1;

if (!img.isContinuous()) {
img = img.clone(); // ensure tight rows for pointer math
}

// Rotate using the C-style function
uint8_t *dst_ass = (uint8_t*)malloc((size_t)N * N);
uint8_t *dst_c = (uint8_t*)malloc((size_t)N * N);

if (!dst_ass || !dst_c) {
printf ("Error: out of memory\n");
return 1;

startv=clock() ;
rotate90_gray_rvv(img.data, dst_ass);
endv=clock() ;
elapsed_secv = (double) (endv - startv) / CLOCKS_PER_SEC;
printf ("Vector execution time in sec: %.6f\n",elapsed_secv);
start=clock();
rotate90_cw_u8_c(img.data, dst_c);
end=clock() ;
elapsed_sec = (double) (end - start) / CLOCKS_PER_SEC;
printf ("Scalar execution time in sec: %.6f\n",elapsed_sec);
printf ("speed-up: %.3f\n",elapsed_sec/elapsed_secv);
// Wrap output buffer and save with OpenCV
cv::Mat rot_ass (N, N, CV_8UCl, dst_ass);
cv::Mat rot_c(N, N, CvV_8UCl1l, dst_c);
if ('cv::imwrite (out_path_ass, rot_ass)) {
printf ("Error: failed to write %s\n", out_path_ass);
free (dst_ass);
return 1;

if ('cv::imwrite (out_path_c, rot_c)) {
printf ("Error: failed to write %s\n", out_path_c);
free(dst_c);
return 1;
}
printf ("Wrote: %s\n", out_path_ass);
printf ("Wrote: %s\n", out_path_c);
v::imshow ("Rotatds assembler", rot_ass);
cv: :imshow ("Rotated C",rot_c);
cv::waitKey (0);
free (dst_ass);
free(dst_c);
return O;

}

g++ -march=rvé64gcv rotate90_gray_rvv.s rotate90_gray.cpp -o rotate90_gray $(pkg-config —--cflags --
libs opencv4)

% ./rotate90_gray pictures/deer.512.512.grey.png r90_ass.png r90_c.png

Vector execution time in sec: 0.016417

Scalar execution time in sec: 0.048995

speed-up: 2.984
Wrote: r90_ass.png
Wrote: r90_c.png

After the compilation with optimized C++ code:

% g++ —-02 -march=rvé64gcv —-fopt-info-vec rotate90_gray rvv.s rotate90_gray.cpp —-o rotate90_gray $
(pkg-config —--cflags —--libs opencv4)

/usr/include/c++/14/bits/stl_vector.h:99:4: optimized: basic block part vectorized using 16 byte
vectors

/usr/include/opencv4d/opencv2/core/types.hpp:1675:7: optimized: basic block part vectorized using 8
byte vectors

% ./rotate90_gray pictures/deer.512.512.grey.png r90_ass.png r90_c.png

Vector execution time in sec: 0.016330

Scalar execution time in sec: 0.017655

speed-up: 1.081

Wrote: r90_ass.png

Wrote: r90_c.png

Fig 5.1 Rotated grayscale image by assembler vectorized function

5.1.2 Image rotation - RGB
With the following example the program rotates 90 degrees an RGB image.

5.1.2.1 Assembly code

.text

.align 2

.option push

.option arch, +v

.globl rotate_rgb_90ccw_rvv
aO=src, al=srcW, a2=srcH, a3=srcStep, ad=dst, aS5=dstW, a6=dstH, a7=dstStep
rotate_rgb_90ccw_rvv:

Basic sanity: sizes must be positive and match rotation (dstW=srcH, dstH=srcW)

bge x0, al, .Lret # srcW <= 0
bge x0, a2, .Lret # srcH <= 0
bne a5, a2, .Lret # dstW != srcH -> bail (optional)
bne a6, al, .Lret # dstH != srcW -> bail (optional)
beqz a0, .Lret
beqz a4, .Lret
1i a6, 3 # a6 = 3 (byte stride between channels for vlse/vsse)
1i t0, O #y=0
Row loop over source rows (y = 0..srcH-1)
.Lrow:
bge t0, a2, .Lret
row0 = src + y*srcStep
mul tl, t0, a3
add t2, a0, t1 # t2 = row0 base
Destination column index for CCW: dx = dstW - 1 - y
addi t3, a5, -1 # t3 =dstWw - 1
sub t3, t3, t0 # t3 = dx
Column byte offset = 3*dx
slli t4, t3, 1 # 2*dx
add t4, t4, t3 # t4 = 3*dx
processed x (source columns)
1i t5, 0
Vector loop across the source row (x = 0..srcW-1)
.Lcol:
bge t5, al, .Lnext_row
VL = min(remaining, VLMAX); we just set by remaining
sub tl, al, t5 # remaining = srcW - processed
vsetvli tl1l, tl1l, e8, ml # elements = remaining bytes (per channel)
csrr t6, vl # t6 = VL (number of pixels in this chunk)

byte offsets:
src_chunk_base = row0 + 3*processed

slli tl, t5, 1 # 2*processed

add tl, t1, t5 # tl = 3*processed

add tl, t2, t1 # tl = src_chunk_base

dst_row_start = dst + (processed) *dstStep

mul t3, t5, a7

add t3, a4, t3 # t3 = dst + processed*dstStep

dst_chunk_base for this column dx: add 3*dx

add t3, t3, t4 # t3 = base of column (x-start row), at pixel column dx
- LOAD channels from source row (stride = 3 bytes) —-———————
vlse8.v vO0, (tl), a6 # vO <- R[x .. x+VL-1]

addi tl, t1, 1

vlise8.v vl, (tl), a6 # vl <- G[x .. x+VL-1]

addi t1, t1, 1

vlise8.v v2, (tl), a6 # v2 <- B[x .. x+VL-1]
———————— STORE channels down the destination column (stride = dstStep) --——————-—-
vsse8.v vO0, (t3), a7 # write R at (dy .. dy+VL-1, dx)
addi tl, t3, 1
vsse8.v vl, (tl), a7 # write G
addi tl, t3, 2
vsse8.v v2, (tl1l), a7 # write B
Advance processed x by VL
add t5, t5, t6
3j .Lecol
Next source row

.Lnext_row:
addi t0, tO0, 1

j .Lrow
.Lret:

ret

.option pop

5.1.2.2 Test C code

#include <opencv2/opencv.hpp>
#include <stdint.h>

#include <stdio.h>

#include <time.h>

clock_t startv, endv;
clock_t start, end;
double elapsed_secv;
double elapsed_sec;

extern "C" void rotate_rgb_90ccw_rvv(const uint8_t* src, int srcW, int srcH, int srcStep, uint8_t*
dst, int dstW, int dstH, int dstStep);

void rotate_rgb_90cw(const uint8_t* src, int srcW, int srcH, int srcStep, uint8_t* dst, int dstW,
int dstH, int dstStep)

{
if (!src || !dst) return;
if (dstW != srcH || dstH != srcW) {
printf ("Error: dst size must be (srcH x srcW) for 90-degree rotation.\n");
return;
}
for (int y = 0; y < srcH; ++y) {
const uint8_t* srow = src + (size_t)y * srcStep;
for (int x = 0; x < srcW; ++x) {
const uint8_t* spix = srow + 3 * x;
// Mapping: (x,y) in source -> (y, dstH-1-x) in dest
int dx = y;
int dy = dstH - 1 - x;
uint8_t* drow = dst + (size_t)dy * dstStep;
uint8_t* dpix = drow + 3 * dx;
dpix[0] = spix[0];
dpix[1] = spix[1];
dpix[2] = spix[2];
}
}
}

void rotate_rgb_90ccw(const uint8_t* src, int srcW, int srcH, int srcStep,
uint8_t* dst, int dstW, int dstH, int dstStep)

{
if (!src || !dst) return;
if (dstW != srcH || dstH != srcW) {
printf ("Error: dst size must be (srcH x srcW) for 90-degree rotation.\n");
return;
}
for (int y = 0; y < srcH; ++y) {
const uint8_t* srow = src + (size_t)y * srcStep;
for (int x = 0; x < srcW; ++x) {
const uint8_t* spix = srow + 3 * x;
// Mapping: (x,y) in source -> (dstW-1-y, x) in dest
int dx = dstW - 1 - y;
int dy = x;
uint8_t* drow = dst + (size_t)dy * dstStep;
uint8_t* dpix = drow + 3 * dx;
dpix[0] = spix[0];dpix[1] = spix[1l];dpix[2] = spix[2];
}
}
}
int main(int argc, char** argv)
{

if (argec < 2) {
printf ("Usage: %s input.png [output.png]\n", argv[0]);

return 1;
}
const char* inPath = argv[1l];
const char* outPath = (argc > 2) ? argv[2] : "rotated90.png";

// Read color image

cv::Mat src = cv::imread(inPath, cv::IMREAD_COLOR) ;
if (src.empty()) {
printf ("Error: cannot read %s\n", inPath);
return 2;

printf ("Loaded %s: %dx%d\n", inPath, src.cols, src.rows);

// Destination size = (srcH x srcW)

cv::Mat dst (src.cols, src.rows, CV_8UC3);

// Rotate 90° clockwise

start=clock();

rotate_rgb_90cw(src.data, src.cols, src.rows, (int)src.step, dst.data, dst.cols, dst.rows,
(int)dst.step);

end=clock() ;

elapsed_sec = (double) (end - start) / CLOCKS_PER_SEC;

printf ("Scalar execution time in sec: %.6f\n",elapsed_sec);

startv=clock();

rotate_rgb_90ccw_rvv(src.data, src.cols, src.rows, (int)src.step, dst.data, dst.cols, dst.rows,
(int)dst.step);

endv=clock() ;

elapsed_secv = (double) (endv - startv) / CLOCKS_PER_SEC;

printf ("Vector execution time in sec: %.6f\n",elapsed_secv);

printf ("Speed-up: %.3f\n",elapsed_sec/elapsed_secv);

// Save & show

v::imwrite (outPath, dst);

printf ("Wrote rotated image: %s\n", outPath);

cv::imshow("Original", src);

v::imshow ("Rotated 90 CW", dst);

printf ("Press any key in the image window to exit...\n");

cv::waitKey (0);

return O0;

}

% g++ —-march=rvé64gcv rgb_rotation90_rvv.s rgb_rotation90.cpp -o rgb_rotation90 $ (pkg-config —-
cflags —-libs opencvi4)

% ./rgb_rotation90 pictures/deer.512.512.png rot_lena_color.png

Loaded lena_color.png: 512x512

Scalar execution time in sec: 0.127974

Vector execution time in sec: 0.030558

Speed-up: 4.188

After the compilation with optimized (vectorized) C code:

% g++ —-02 —-march=rvé4gcv —-fopt—-info-vec rgb_rotation90_rvv.s rgb_rotation90.cpp —o rgb_rotation90 $
(pkg-config —--cflags —--libs opencv4)

/usr/include/opencv4d/opencv2/core/types.hpp:1675:7: optimized: basic block part vectorized using 8
byte vectors

/usr/include/c++/14/bits/stl_vector.h:99:4: optimized: basic block part vectorized using 16 byte
vectors

% ./rgb_rotation90 pictures/deer.512.512.png

Loaded lena_color.png: 512x512

Scalar execution time in sec: 0.033407

Vector execution time in sec: 0.029483

Speed-up: 1.133

Wrote rotated image: rotated90.png

Fig 5.2 Rotated RGB image by assembly vectorized function

5.2 Image creation

5.2.1 Image creation (square)
In this example, we explore how to create a simple grayscale image with a black background and a
generated white shape—a small square.

5.2.1.1 Image creation (square) - assembly with vector instructions

.text

.align 2

.option push

.option arch, +v

.globl create_square_rvv

void create_square_rvv(uint8_t*
a0 = image, al = center_x, a2 =
create_square_rvv:

Early return if size <= 0

blez a3, .Lret

Save registers

addi sp, sp, —-32

sd s0, O(sp)

sd sl, 8(sp)

sd s2, 16(sp)

sd s3, 24 (sp)

Calculate top-left corner:
srli t0, a3, 1

sub tl, al, toO

sub t2, a2, to

Clamp start coordinates to
1i t3, 0

1i t4, 512

Clamp start_x to [0, 511]
blt tl, t3, .Lclamp_x min
bge tl, t4, .Lclamp_x_ max

.Lclamp_x_done
.Leclamp_x_min:

1i tl, 0

j .Lclamp_x_done
.Lclamp_x_max:

1i tl, 511

.Lclamp_x_done:

Clamp start_y to [0, 511]

blt t2, t3, .Lclamp_y_min
bge t2, t4, .Lclamp_y max
j .Lclamp_y_done
.Lclamp_y_min:
t2, 0

1i

3j .Lclamp_y_done
.Lclamp_y_max:

1i t2,

.Lclamp_y_done:

Calculate end coordinates

511

add t5, tl1, a3
add t6, t2, a3
ret

.option pop

nd_y = start_y + size
Clamp end coordinates to [0
blt t5, t3,
bge t5, t4,
j .Lclamp_ex_done
.Lclamp_ex_min:

int size,

start_y <= 511)

image, int center_x, int center_y,
center_y, a3 = size, a4 = value
start_x = center_x - size/2
t0 = size / 2
tl = start_x = center_x - size/2
t2 = start_y = center_y - size/2
image bounds (0 <= start_x,
t3 = 0 (min bound)
t4 = 512 (max bound)
t5 = end_x = start_x + size
t6 = e.Lret:
, 512]

.Lclamp_ex_min
.Lclamp_ex_max

1i t5, 0

3j .Lclamp_ex_done
.Lclamp_ex_max:

1i t5, 512
.Lclamp_ex_done:

blt t6, t3, .Lclamp_ey_min

bge t6, t4, .Lclamp_ey_max

.Lclamp_ey_done
.Lclamp_ey_min:

1i t6, 0

3j .Lclamp_ey_done
.Lclamp_ey_max:

1i t6, 512

.Lclamp_ey_done:

Calculate actual width and height after clamping

sub s0, t5, t1

sub sl, t6, t2

Early return if no area to
blez s0, .Lcleanup

blez sl, .Lcleanup

Calculate image row stride
1i s2, 512

Calculate starting address
mul t3, t2, s2

add t3, t3, t1

sO0 = actual_width
sl = actual_height
£ill
(512 bytes)

s2 = image width (stride)
in image buffer

t3 = start_y * stride

t3 += start_x

uint8_t value)

add s3, a0, t3 # s3 = image + start_y*stride + start_x
Broadcast the fill value to a vector register

vsetvli t4, x0, e8, ml, ta, ma # Set SEW=8, no elements yet
vmv.v.x vl, a4 # vl = broadcast (value)
Loop through each row
1i t0, O # t0 = row counter
.Lrow_loop:
bge t0, sl1, .Lcleanup # Exit when all rows processed
Calculate current row address
mul tl, t0, s2 # tl = row_offset = row * stride
add t2, s3, tl1 # t2 = current_row_address
Fill the row using vector instructions
mv t3, sO # t3 = remaining width
mv t4, t2 # t4 = current address
.Lfill_row:
Set vector length for this chunk
vsetvli t5, t3, e8, ml, ta, ma # t5 = min(remaining, VLMAX)

Store vector to memory
vse8.v vl, (t4)
Advance pointers

add t4, t4, t5 # Move destination pointer
sub t3, t3, t5 # Decrement remaining count
bnez t3, .Lfill_row # Continue if more to £fill
Next row
addi t0, tO0, 1 # row_counter++
3j .Lrow_loop
.Lcleanup:
Restore registers
1d s0, O(sp)
1d sl, 8(sp)
1d s2, 16(sp)
1d s3, 24 (sp)
addi sp, sp, 32
.Lret:
ret
.option pop

5.2.1.2 Image creation (square) - C test function

The following test program integrates the external create_square_rvv () function with the local scalar
function create_square_scalar (). Both functions take the same arguments and generate 512x512 pixel
images, but with different placements of the small square. The resulting image buffers are stored as . pgm files.

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#define WIDTH 512
#define HEIGHT 512
#include <time.h>

clock_t startv, endv;
clock_t start, end;
double elapsed_secv;
double elapsed_sec;
int steps=100000;

// Assembly function prototype
extern void create_square_rvv(uint8_t* image, int center_x, int center_y, int size, uint8_t value);
// Function to save image as PGM
void save_pgm(const char *filename, uint8_t *image, int width, int height) {
FILE *fp = fopen(filename, "wb");
if (!'fp) {
printf ("Error opening file %s\n", filename);
return;

}

fprintf (fp, "P5\n%d %d\n255\n", width, height);

size_t written = fwrite(image, 1, width * height, f£fp);

fclose (fp);

printf ("Image saved as %s (%zu bytes written)\n", filename, written);

// Simple scalar version for comparison
void create_square_scalar (uint8_t *image, int center_x, int center_y, int size, uint8_t wvalue) {
if (size <= 0) return;
int start_x = center_x - size/2;
int start_y = center_y - size/2;
// Clamp coordinates
start_x = (start_x < 0) ? 0 : (start_x >= WIDTH) ? WIDTH-1 : start_x;
start_y = (start_y < 0) ? 0 : (start_y >= HEIGHT) ? HEIGHT-1 : start_y;
int end_x = start_x + size;
int end_y = start_y + size;
end_x = (end_x > WIDTH) ? WIDTH : end_x;
end y = (end_y > HEIGHT) ? HEIGHT : end_y;
for (int y = start_y; y < end_y; y++) {
for (int x = start_x; x < end_x; x++) {
image[y * WIDTH + x] = value;

}

int main() {
printf ("Testing create_square_rvv function...\n");
// Allocate and initialize image buffer
uint8_t *image = (uint8_t *)calloc(WIDTH * HEIGHT, sizeof (uint8_t));
if (!'image) {
printf ("Memory allocation failed\n");
return 1;

}

printf ("Creating 10x10 white square at center (256,256)...\n");

// Test with a simple case first

startv=clock() ;

for (int i=0;i<steps;i++) create_square_rvv(image, 256, 256, 10, 255);
endv=clock() ;

elapsed_secv = (double) (endv - startv) / CLOCKS_PER_SEC;

printf ("Vector execution time in sec: %.6f\n",elapsed_secv);

// Verify the result by checking if any pixels were set

int count = 0;
for (int i = 0; i < WIDTH * HEIGHT; i++) {
if (image[i] == 255) count++;

}

printf ("Pixels set to white: %d (expected: 100)\n", count);
// Save the result

save_pgm("square_rvv.pgm", image, WIDTH, HEIGHT);

// Test edge cases

printf ("Testing edge case: square at corner...\n");

memset (image, 0, WIDTH * HEIGHT); // Clear image
//create_square_rvv(image, 5, 5, 20, 255);

start=clock();

for (int i=0;i<steps;i++) create_square_scalar(image, 5, 5, 20, 255);
end=clock();

elapsed_sec = (double) (end - start) / CLOCKS_PER_SEC;
printf ("Scalar execution time in sec: %.6f\n",elapsed_sec);
printf ("Speed-up: %.3f\n",elapsed_sec/elapsed_secv);
save_pgm("square_corner.pgm", image, WIDTH, HEIGHT);

free (image) ;

printf ("Test completed successfully!\n");

return O;

}

% gcc —-march=rvé4gcv create_square_rvv.s create_square.c -o create_square -1lm
% ./create_square

Testing create_square_rvv function...

Creating 10x10 white square at center (256,256)...

Vector execution time in sec: 0.012225

Pixels set to white: 100 (expected: 100)

Image saved as square_rvv.pgm (262144 bytes written)

Testing edge case: square at corner...

Scalar execution time in sec: 0.639294

Speed-up: 52.294

After the compilation with optimization:

%$gcc —02 -march=rvé4gcv create_square_rvv.s create_square.c -o create_square -1lm
./create_square

Testing create_square_rvv function...

Creating 10x10 white square at center (256,256)...

Vector execution time in sec: 0.011749

Pixels set to white: 100 (expected: 100)

Image saved as square_rvv.pgm (262144 bytes written)

Testing edge case: square at corner...

Scalar execution time in sec: 0.007318

Speed—-up: 0.623
Image saved as square_corner.pgm (262144 bytes written)
Test completed successfully!

Note that the C optimization with vectorization provides better result that manual code with vector
instructions !

%$display square_corner.pgm

$display square_rvv.pgm

Fig 5.3 Generated grayscale (512x512) images by C code function (square_corner.pgm) and assembler
vectorized function (square_rvv.pgm)

5.2.2 Image creation (line)
In this example we explore how to create a simple grayscale image with a black background and generated
shape: white - line.

5.2.2.1 Image creation (line) - assembly with vector instructions

void draw_line (uint8_t *image, int x0, int yO, int x1, int y1, uint8_t value)
a0=image, al=x0, a2=y0, a3=x1l, a4=yl, aS5=value
Requires: RV64GCV + Zbb

.text

.align 2

.globl draw_line_rvv

.type draw_line_rvv, Q@function
.equ WIDTH, 512

.equ HEIGHT, 512

draw_line_rvv:
addi sp, sp, -112

sd ra, 0 (sp)
sd s0, 8 (sp)
sd sl, 16(sp)
sd s2, 24(sp)
sd s3, 32(sp)
sd s4, 40(sp)
sd s5, 48(sp)
sd s6, 56(sp)
sd s7, 64 (sp)
sd s8, 72(sp)
sd s9, 80(sp)
sd s10, 88(sp)
sd sl1l, 96(sp)
mv s0, a0l # image*
mv sl, al # x0
mv s2, a2 # yo
mv s3, a3 # x1
mv s4, a4 # yl
mv s5, a5 # value (byte)
dx = abs(x1 - x0)
sub t0, s3, sl
neg tl, tO
max s6, t0, t1l # dx
dy = abs(yl - y0)
sub t0, s4, s2
neg tl, tO
max s7, t0, t1 # dy
sx = (x0 <x1) 21 : -1
1i t2, 1
1i t3, -1
blt sl, s3, 1f
mv s8, t3
j 2f
1: mv s8, t2
2:
sy=(y0 <yl) 21 : -1
blt s2, s4, 3f
mv s9, t3
j 4f
3: mv s9, t2
4:
err = dx - dy
sub sl0, s6, s7
——— Fast paths
beqz s7, .HORIZ_PATH # dy == 0
beqz s6, .VERT_PATH # dx == 0
3j .BRESENHAM
#
Horizontal line
#
.HORIZ_PATH:
bltz s2, .DONE
1i t4, HEIGHT
bgeu s2, t4, .DONE
min t5, s1, s3 # x_start
max t6, s1, s3 # x_end
max t5, t5, x0 # clamp start to O
1i tl, WIDTH-1 # (replaces former t7)
minu t6, t6, tl # clamp end to WIDTH-1
bgt t5, t6, .DONE
1i t0, WIDTH
mul tl, s2, tO0 # y*WIDTH
add tl, t1, t5 # + x_start
add tl, s0, t1 # start ptr
sub t2, t6, t5
addi t2, t2, 1 # len

.HORIZ_LOOP:
beqz t2, .DONE
vsetvli t3, t2, e8,ml,ta,ma
vmv.v.x vl, s5

vse8.v vl, (tl)
csrr t4, vl
add tl, t1, t4
sub t2, t2, t4
3j .HORIZ_LOOP
#
Vertical line
.VERT_PATH:
bltz sl, .DONE
1i t4, WIDTH
bgeu sl, t4, .DONE
min t5, s2, s4 # y_start
max t6, s2, s4 # y_end
max t5, t5, x0 # clamp start to O
1i tl, HEIGHT-1 # (replaces former t7)
minu t6, t6, tl1 # clamp end to HEIGHT-1
bgt t5, t6, .DONE
1i t0, WIDTH
mul t1l, t5, tO
add tl, t1, sl
add tl, s0, t1 # base
sub t2, t6, t5
addi t2, t2, 1 # len
mv t5, t0 # stride = WIDTH
.VERT_LOOP :
beqz t2, .DONE
vsetvli t3, t2, e8,ml,ta,ma
vmv.v.x vl, s5
vsse8.v vl, (tl), t5
csrr t4, v1
mul t4, t4, t5 # advance = vl * stride
add tl, t1, t4
sub t2, t2, t3
j .VERT_LOOP
#
General Bresenham (scalar)
#
.BRESENHAM:
.BRESE_LOOP :
bltz sl, .SKIP_PX
bltz s2, .SKIP_PX
1i t0, WIDTH
bgeu sl, t0, .SKIP_PX
1i t1l, HEIGHT
bgeu s2, tl1l, .SKIP_PX
mul t2, s2, t0 # y*WIDTH
add t2, t2, sl # + x
add t2, s0, t2 # ptr
sb s5, 0(t2)
.SKIP_PX:
beq sl, s3, 1f
bne s2, s4, 2f
1: beq s2, s4, .DONE
2: slli t3, s10, 1 # e2 = 2%*err
neg t4, s7
ble t3, t4, 3f # if (e2 > -dy)
sub s10, s10, s7
add sl, sl1l, s8
3:
bge t3, s6, 4f # if (e2 < dx)
add s10, s10, sé6
add s2, s2, s9
4: 35 .BRESE_LOOP
#
.DONE :
1d ra, 0 (sp)
1d s0, 8 (sp)
1d sl, 16(sp)
1d s2, 24 (sp)
1d s3, 32(sp)
1d s4, 40(sp)
1d s5, 48(sp)
1d s6, 56(sp)
1d s7, 64 (sp)
1d s8, 72 (sp)
1d s9, 80(sp)
1d s10, 88(sp)
1d sll, 96 (sp)

addi sp, sp, 112
ret

5.2.2.2 Image creation (line) - main test program in C

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#define WIDTH 512
#define HEIGHT 512
clock_t startv, endv;
clock_t start, end;
double elapsed_secv;
double elapsed_sec;
int steps=100000;

// Assembly function (RV64GCV+Zbb) you already have:
extern "C" void draw_line_rvv(uint8_t *image,

int x0, int yoO,

int x1, int y1,

uint8_t value);

/* Unbiased random integer in [0, n-1] using rejection sampling */
static unsigned rand_bounded (unsigned n) {
unsigned limit = RAND_MAX - (RAND_MAX % n); // largest multiple of n < RAND_MAX
unsigned r;
do {
r = (unsigned)rand();
} while (r >= limit);
return r % n;

// Function to draw a line between two points using Bresenham's algorithm
void draw_line (uint8_t *image, int x0, int y0, int x1, int yl, uint8_t value) {

int dx = abs(xl - x0);
int dy = abs(yl - yO0);
int sx = (x0 < x1) ? 1 : -1;
int sy = (y0 <yl1l) 21 : -1;

int err = dx - dy;
while (1) {
if (x0 >= 0 && x0 < WIDTH && y0 >= 0 && y0 < HEIGHT) {
image[y0 * WIDTH + x0] = value;

}
if (x0 == x1 && y0 == yl) break;
int e2 = 2 * err;
if (e2 > -dy) {
err —-= dy;
x0 += sx;

}
if (e2 < dx) {
err += dx;
y0 += sy;
}
}

}
// Write an 8-bit grayscale PGM (binary P5)
static int write_pgm(const char *path, const uint8_t *img, int w, int h)
{
FILE *f = fopen(path, "wb");
if ('£f) {
perror ("fopen") ;
return -1;
}
// P5 header: magic, width height, maxval
if (fprintf (£, "P5\n%d %d\n255\n", w, h) < 0) {
perror ("fprintf");
fclose (£f);
return -1;

}
size_t n = (size_t)w * (size_t)h;
if (fwrite(img, 1, n, £f) != n) {
perror ("fwrite");
fclose (£f);
return -1;
}
fclose(£f);
return O;

}

// Optional helper to clear image
static void clear_image (uint8_t *img, uint8_t wvalue)
{
memset (img, value, (size_t)WIDTH * (size_t)HEIGHT);

int main(void)
{
// Allocate framebuffer
uint8_t *image = (uint8_t*)malloc((size_t)WIDTH * (size_t)HEIGHT);
if (!image) {
fprintf (stderr, "Out of memory\n");
return 1;

}

int x0=rand_bounded (512);

int xl=rand_bounded (512);

int yO=rand_bounded (512);

int yl=rand_bounded(512);

// Border box

clear_image (image, 0);

startv=clock();

for (int i=0; i<steps;i++) {

draw_line_rvv(image, x0, x1, yO0, yl, 255);

}

endv=clock() ;

elapsed_secv = (double) (endv - startv) / CLOCKS_PER_SEC;
printf ("Vector execution time in sec: %.6f\n",elapsed_secv);
// Border box

clear_image (image, 0);

start=clock();

for (int i=0;i<steps;i++) {

draw_line(image, x0, x1, yO0, yl, 255);

end=clock();
elapsed_sec = (double) (end - start) / CLOCKS_PER_SEC;
printf ("Scalar execution time in sec: %.6f\n",elapsed_sec);
printf ("Speed-up: %.3f\n",elapsed_sec/elapsed_secv);
// Save as PGM
const char *out_path = "output.pgm";
if (write_pgm(out_path, image, WIDTH, HEIGHT) != 0) {
fprintf (stderr, "Failed to write %s\n", out_path);
free (image) ;
return 1;
}
printf ("Wrote %s (%dx%d)\n", out_path, WIDTH, HEIGHT);
free (image) ;
return O;

}

% g++ —-march=rvé4gcvzbb draw_line_rvv.s draw_line.c -o draw_line
% ./draw_line

Vector execution time in sec: 0.424019

Scalar execution time in sec: 1.388368

Speed—-up: 3.274

Wrote output.pgm (512x512)

After C code optimization:

% g++ -02 -march=rvé4gcvzbb draw_line_rvv.s draw_line.c -o draw_line
% ./draw_line

Vector execution time in sec: 0.421635

Scalar execution time in sec: 0.223875

Speed-up: 0.531

Wrote output.pgm (512x512)

Note that the C optimization with vectorization provides better result that manual code with vector
instructions !

GraphicsMagick: output.pgm e

Fig 5.4 Generated grayscale (512x512) image by C code function (draw_1line. c) and assembler vectorized
function (draw_line_rvv.s)

To do
Analyze, compile and execute the above example program.

Note that we are using vector (v) and binary (zbb) extension instructions (rvé64gcvzbb).
Take closer look at the following instructions:

min t5, sl1l, s3 # x_start
max t6, sl, s3 # x_end
max t5, t5, x0 # clamp start to O

5.3 Image animation with openGL and rvv instructions

In these examples, we make use of OpenGL functionalities. With this library, image frames are rendered
directly into a byte buffer for display. This approach enables the creation of animation examples accelerated
with vector instructions.

5.3.1 Image Animation - Colors

In the first example, we generate random color values (applied uniformly to all pixels) and render them into the
image buffer.

5.3.1.1 Image animation - colors: vector assembly: £ill color_rvv

-march=rv32gcv -mabi=ilp32 OR
—-march=rvé64gcv -mabi=1p64
void £ill_color_rvv(uint8_t *buffer, uint8_t r, uint8_t g, uint8_t b)

.text

.align 2

.globl £fill_color_rvv

.type fill_color_rvv, @function

.equ WIDTH, 640
.equ HEIGHT, 480
.equ ROWBYTES, WIDTH*3 # 1920 bytes per row

fill_color_rvv:
a0 = buffer, al = r, a2 =g, a3 =b

mv t0, al # t0 = base pointer to current row

1i t5, HEIGHT # t5 = rows remaining

beqz t5, .Ldone

1i t6, 3 # t6 = stride (3 bytes between consecutive elements)
.Lrow:

mv t2, t0 # t2 = R start (row + 0)

addi t3, t0, 1 # t3 = G start (row + 1)

addi t4, t0, 2 # t4 = B start (row + 2)

1i a4, WIDTH # a4 = pixels remaining in this row
.Lxloop:

vsetvli tl, a4, e8, ml, ta, ma # tl
Broadcast (r,g,b) across VL elements

VL (number of pixels this chunk)

vmv.v.x v0, al # v0 := r

vmv.v.x vl, a2 # vl :=g

vmv.v.x v2, a3 #v2 :=b

Strided vector stores: write RGB planes with stride = 3 bytes
vsse8.v v0, 0(t2), t6 # row[0], row[3], row[6],
vsse8.v vl, 0(t3), té6 # row[l], row[4], row[7],
vsse8.v v2, 0(t4), té6 # row[2], row[5], row[8],
Decrement pixels remaining in this row

sub a4, a4, ti

Compute increment = VL * 3 without using t7

slli a5, t1, 1 # a5 = VL * 2

add a5, a5, tl # a5 = VL * 3

Advance channel pointers by increment

add t2, t2, a5

add t3, t3, a5

add t4, t4, as

bnez a4, .Lxloop # more pixels in this row?

Next row
addi t5, t5, -1
addi t0, t0, ROWBYTES

bnez t5, .Lrow
.Ldone:
ret
.size £fill_color_rvv, .-fill_color_rvv

5.3.1.2 Image animation - colors C test program/function

#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#define WIDTH 640
#define HEIGHT 480

extern "C" void fill_color_rvv(uint8_t *buffer, uint8_t r, uint8_t g, uint8_t b);
static GLuint tex = 0;

static uint8_t *frame = NULL;
static int color_index = 0; // 0 = red, 1 = green, 2 = blue

static int color_red = O;
static int color_green = 0;
static int color_blue = 0;

static void fill_color (uint8_t *buffer , uint8_t r, uint8_t g, uint8_t b)
for (int y = 0; y < HEIGHT; ++y) {

uint8_t *row = buffer + (size_t)y * WIDTH * 3;
for (int x = 0; x < WIDTH; ++x) {

row[3*x + 0] = r;
row[3*x + 1] = g;
row[3*x + 2] = b;
}
}
}
static void init_texture (void)
{
frame = (unsigned char*)malloc((size_t)WIDTH * HEIGHT * 3);
if (!frame) { fprintf (stderr, "OOM\n"); exit(1); }
glGenTextures (1, &tex);
glBindTexture (GL_TEXTURE_2D, tex);
glPixelStorei (GL_UNPACK_ALIGNMENT, 1);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN FILTER, GL_LINEAR);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE MAG_FILTER, GL_LINEAR);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE WRAP_T, GL_CLAMP);
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGB, WIDTH, HEIGHT, O,
GL_RGB, GL_UNSIGNED_BYTE, NULL);
}
static void reshape (int w, int h)
{
glviewport (0, 0, w, h);
glMatrixMode (GL_PROJECTION); glLoadIdentity();
gluOrtho2D (0.0, (GLdouble)WIDTH, 0.0, (GLdouble)HEIGHT);
glMatrixMode (GL_MODELVIEW); glLoadIdentity();
}

static void display (void)

{
clock_t startv, endv;
clock_t start, end;
double elapsed_secv;
double elapsed_sec;
int step=10;
startv=clock() ;
for (int i=0;i<step;i++) £fill_color_rvv(frame,color_red, color_green, color_blue);
endv=clock() ;
elapsed_secv = (double) (endv - startv) / CLOCKS_PER_SEC;
printf ("Vector execution time in sec: %.6f\n",elapsed_secv);
start=clock();
for (int i=0;i<step;i++) £fill_color (frame,color_red, color_green, color_blue);
end=clock () ;
elapsed_sec = (double) (end - start) / CLOCKS_PER_SEC;
printf ("Scalar execution time in sec: %.6f\n",elapsed_sec);
printf ("Speed-up: %.3f\n",elapsed_sec/elapsed_secv);
// Upload frame
glBindTexture (GL_TEXTURE_2D, tex);
glTexSubImage2D (GL_TEXTURE_2D, 0, 0, 0, WIDTH, HEIGHT,

GL_RGB, GL_UNSIGNED_BYTE, frame);

// Draw
glClear (GL_COLOR_BUFFER_BIT) ;
glEnable (GL_TEXTURE_2D) ;
glBegin (GL_QUADS) ;

glTexCoord2f(0.£f, 0.f); glVertex2f(0.f, 0.f);

glTexCoord2f(1.£f, 0.f); glVertex2f (WIDTH, 0.f);

glTexCoord2f(1.£f, 1.f); glVertex2f (WIDTH, HEIGHT);

glTexCoord2f(0.£f, 1.f); glVertex2f(0.f, HEIGHT) ;
glEnd () ;

glDisable (GL_TEXTURE_2D) ;
glutSwapBuffers() ;
}

static void timer (int wvalue)

{
(void)value;
// Move to next color
//color_index = (color_index + 1) % 3;
color_red = rand()%256; // (color_red + 1) % 256;
color_green = rand()%256; // (color_green + 1) % 256;
color_blue = rand()$%256; // (color_blue + 1) % 256;
glutPostRedisplay() ;
glutTimerFunc (100, timer, 0); // change color every 1 second
}

int main(int argc, char **argv)
{
srand (time (NULL)) ;
glutInit (&argc, argv);
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB) ;

glutInitWindowSize (WIDTH, HEIGHT);
glutCreateWindow ("Simple RGB Animation (640x480)");
glClearColor(0.£f, 0.£f, 0.£, 1.f);
reshape (WIDTH, HEIGHT);
init_texture();

glutDisplayFunc (display) ;
glutReshapeFunc (reshape) ;
glutTimerFunc (0, timer, O0);
glutMainLoop() ;

free (frame) ;

return O;

% g++ -march=rvé64gcv fill_color.c fill_color_rvv.s -o fill_color -1GLU -lglut -1GL

% ./£fill_color

MESA: error: ZINK: vkEnumeratePhysicalDevices failed (VK_ERROR_INITIALIZATION_FAILED)
MESA: error: ZINK: failed to choose pdev

glx: failed to create drisw screen

Vector execution time in sec: 0.012705

Scalar execution time in sec: 0.090637

Speed-up: 7.134
Vector execution time in sec: 0.010012
Scalar execution time in sec: 0.090785

Speed-up: 9.068

After the compilation with optimization:

% g++ —-02 -march=rvé64gcv —-fopt-info-vec fill_color.c fill_color_rvv.s —-o fill_color -1GLU -lglut -
1GL

fill color.c:24:27: optimized: loop vectorized using variable length vectors

% ./£fill_color

WARNING: Some incorrect rendering might occur because the selected Vulkan device (PowerVR B-Series
BXE-2-32 MC1l) doesn't support base Zink requirements: feats.features.fillModeNonSolid

DRI3 not available

Vector execution time in sec: 0.013101

Scalar execution time in sec: 0.005844

Speed—-up: 0.446

Vector execution time in sec: 0.012548
Scalar execution time in sec: 0.005848
Speed-up: 0.466

Vector execution time in sec: 0.010299
Scalar execution time in sec: 0.005862

Speed—-up: 0.569

Simple RGB Animation (640x480) B O €

Fig 5.5 Generated color (640x480) frame displayed by openGL function.

5.3.2 Image animation - rotate 90 degrees
In the following example we take (load) an image (. png) using openCV image read function.

Than we use the byte buffer as an input to rotate 90 degrees function. These function is called by animation timer
in order to produce new (rotated) image and project it on the video memory frame.

rotate90_rvv.s

a0 = src (u8¥)

al = dst (u8¥*)

a2 = N (size_t, width==height)
#

#

dst[(c*N + (N-1-r))*3 + k] = src[((r*N + c)*3) + k], k=0..2

.text

.globl rotate90_rvv
.align 2
rotate90_rvv:
beqz a2, .Lret # if (N==0) return
1i t5, 3 # bytes per pixel
mul a3, a2, t5 # a3 = row_stride = N*3 (bytes)
mv a4, a3 # a4 = dst column stride = N*3
1i t0, O #r=0
.Lrow:
beq t0, a2, .Lret # for (r = 0; r < N; ++r)
srow = src + r*row_stride
mul t2, t0, a3
add t2, a0, t2 # t2 = srow
dptr = dst + (N-1-r)*3
addi t3, a2, -1 # N-1
sub t3, t3, t0 # N-1-r
mul t3, t3, t5 # *3
add t3, al, t3 # t3 = dptr (base for c=0)
mv t6, a2 # rem = N columns left
.Lecol:
beqz t6, .Lnext_row

Set vl for this chunk (SEW=8, LMUL=1)

vsetvli tl, t6,

e8, ml, ta, ma

#tl =vl

Load vl RGB triplets from source row (unit stride)

-> vO=R, vi1=G,

vlseg3e8.v VO,

v2=B
(t2)

Store to rotated column with stride = N*3 bytes
vssseg3e8.v v0, (t3), a4
srow += 3*vl (td4d = 2*vl + vl)
slli t4, t1, 1 # t4 = 2*xvl
add t4, t4, t1 # t4 = 3*vl
add t2, t2, t4
dptr += (N*3)*vl
mul t4, tl1, a4 # td = vl * (N*3)
add t3, t3, t4
sub t6, t6, tl # rem -= vl
j .Lcol
.Lnext_row:
addi t0, t0, 1 # r++
3j .Lrow
.Lret:
ret

// cv_opengl_drawpixels_rotate_512.cpp

// Keep one CPU buffer (RGB, 8UC3, 512x512). Every 2s, rotate it 90° CW

// and display via glDrawPixels.

#include
#include
#include
#include

<stdio.h>
<stdint.h>
<string.h>
<vector>

#include <opencv2/opencv.hpp>
#if defined(__APPLE_)
#include <OpenGL/gl.h>
#include <GLUT/glut.h>
#else
#include
#include
#include
#endif
static
static
static

<GL/gl.h>
<GL/glu.h>
<GL/glut.h>

constexpr int W = 512;
constexpr int H = 512;
std: :vector<uint8_t> gBuf;

// current image buffer

static std::vector<uint8_t> gTmp; // scratch for rotation
static int gWinW = W, gWinH = H;

static unsigned long gTick = 0;

clock_t startv, endv, start, end;

double elapsed_secv,
int steps=10;

elapsed_sec;

extern "C" void rotate90_rvv(const uint8_t* src,
// Inject: copy an RGB Mat (512x512, 8UC3) into gBuf
static void injectImageToBuffer (const cv::Maté& rgb) {
if (rgb.cols != W || rgb.rows != H || rgb.type()
const size_t bytes = (size_t)W * H * 3;
if (!'rgb.isContinuous()) {
cv::Mat tmp = rgb.clone();

uint8_t* dst,

(W*H*3, RGB)

!= CV_8UC3) return;

memcpy (gBuf.data (), tmp.data, bytes);
} else {
memcpy (gBuf.data (), rgb.data, bytes);
}
}
// Rotate 90° CW: (r,c) -> (¢, N-1l-r). Operates on RGB interleaved.

static void rotate90_cw_rgb(const uint8_t* src,

uint8_t* dst) {

size_t N);

const int N = W; // 512
for (int r = 0; r < N; ++r) {
for (int ¢ = 0; ¢ < N; ++c) {
const int si = (r * N + ¢c) * 3;
const int di = (¢ * N+ (N-1 - r)) * 3;
dst[di + 0] = src[si + 0]; dst[di + 1] = src[si + 1];
dst[di + 2] = src[si + 2];

}

static void displayCB() {
glClear (GL_COLOR_BUFFER_BIT) ;
glMatrixMode (GL_PROJECTION); glLoadIdentity();
glMatrixMode (GL_MODELVIEW); glLoadIdentity();
glPixelStorei (GL_UNPACK_ALIGNMENT, 1);
// Draw with origin upper-left: flip Y via negative PixelZoom
glRasterPos2f(-1.£f, 1.f);
glPixelZoom((float)gWinW / W, —(float)gWinH / H);
glDrawPixels (W, H, GL_RGB, GL_UNSIGNED_BYTE, gBuf.data());
glPixelZoom(1l.£f, 1.f);
glutSwapBuffers () ;

}

static void reshapeCB(int w, int h) {
gWinW = (w > 1) ? w : 1;
gWinH = (h > 1) ? h : 1;
glViewport (0, 0, gWinW, gWinH);

static void keyCB(unsigned char key, int, int) {
if (key == 27 || key == 'q') { // ESC / q
#ifdef FREEGLUT
//glutLeaveMainLoop () ;

#endif
exit (0);
if (key == 'r') { // rotate immediately
rotate90_cw_rgb(gBuf.data(), gTmp.data());
gBuf. swap (gTmp) ;
glutPostRedisplay() ;
if (key == 'o') { // reload original file on demand (no path stored here)
// noop placeholder; reload logic can be added if you store the path
}
}

// Every 2000 ms: rotate current buffer 90° CW, update title, redraw
static void timerCB(int) {
++gTick;
start=clock();
for (int i=0;i<steps;i++) rotate90_cw_rgb(gBuf.data(), gTmp.data());
end=clock() ;
elapsed_sec = (double) (end - start) / CLOCKS_PER_SEC;
printf ("Scalar execution time in sec: %.6f\n",elapsed_sec);
startv=clock() ;
for (int i=0;i<steps;i++) rotate90_cw_rgb_ass(gBuf.data(), gTmp.data(), 512);
endv=clock() ;
elapsed_secv = (double) (endv - startv) / CLOCKS_PER_SEC;
printf ("Vector execution time in sec: %.6f\n",elapsed_secv);
printf ("Speed-up: %.3f\n",elapsed_sec/elapsed_secv);
gBuf.swap (gTmp) ;
char title[160];
snprintf (title, sizeof(title), "Pixels 512x512 — rotate 90 CW");
glutSetWindowTitle (title);
glutPostRedisplay () ;
glutTimerFunc (200, timerCB, 0); // re—arm for 2s
}

static bool loadAndPrep (const char* path) {
cv::Mat src = cv::imread(path, cv::IMREAD_UNCHANGED) ;
if (src.empty()) {
printf ("Error: cannot open %s\n", path);
return false;

}
if (src.cols != W || src.rows != H) {
printf ("Note: input is %dx%d, resizing to %dx%d.\n", src.cols, src.rows,
cv::resize(src, src, cv::Size(W, H), 0, 0, cv::INTER_AREA);
}
cv::Mat rgb;
if (src.channels() == 1) cv::cvtColor(src, rgb, cv::COLOR_GRAY2RGB);
else if (src.channels() == 3) cv::cvtColor(src, rgb, cv::COLOR_BGR2RGB);
else if (src.channels() == 4) cv::cvtColor(src, rgb, cv::COLOR_BGRA2RGB) ;

else {
printf ("Unsupported channel count: %d\n", src.channels());
return false;

}
injectImageToBuffer (rgb) ;
return true;

WV

H);

int main(int argc, char** argv) {

if (argec !'= 2) {
printf ("Usage: %s <image_512x512. (png|jpgl...)>\n", argv[0]);
return 1;

}

gBuf.resize((size_t)W * H * 3);

gTmp.resize((size_t)W * H * 3);

if (!'loadAndPrep(argv[l])) return 1;

glutInit (&argec, argv);

glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB) ;

glutInitWindowSize (W, H);

glutCreateWindow ("Pixels 512x512 — rotate 90cw degrees per tick");

glClearColor(0.£, 0.£, 0.£, 1.f);

glutDisplayFunc (displayCB) ;

glutReshapeFunc (reshapeCB) ;

glutKeyboardFunc (keyCB) ;

glutTimerFunc (2000, timerCB, 0); // start periodic rotation

glutMainLoop() ;

return O0;

}

% g++ —-march=rvé4gcv cvgl_ro90.cpp rotate90_rvv.s —o cvgl_rot90 -1GLU -lglut -1GL $(pkg-config ——
cflags —--libs opencv4)

% ./cvgl_rot90 1lena_color.png
Scalar execution time in sec:
Vector execution time in sec:
Speed-up: 5.221

Scalar execution time in sec: 0.123920
Vector execution time in sec: 0.023594
Speed—-up: 5.252

Scalar execution time in sec: 0.123773
Vector execution time in sec: 0.023662

.123390
.023632

oo

After the optimzation:

% g++ -02 —-march=rvé64gcv —-fopt-info-vec cvgl_ro90.cpp rotate90_rvv.s -o cvgl_rot90 -1GLU -lglut -1GL
$ (pkg-config --cflags —--libs opencv4)

/usr/include/c++/14/bits/stl_vector.h:114:13: optimized: basic block part vectorized using 16 byte
vectors

/usr/include/opencv4d/opencv2/core/types.hpp:1679:7: optimized: basic block part vectorized using 8
byte vectors

/usr/include/c++/14/bits/stl_vector.h:99:4: optimized: basic block part vectorized using 16 byte
vectors

% ./cvgl_rot90 pictures/deer.512.512.png

WARNING: Some incorrect rendering might occur because the selected Vulkan device (PowerVR B-Series
BXE-2-32 MC1l) doesn't support base Zink requirements: feats.features.fillModeNonSolid

DRI3 not available

Scalar execution time in sec: 0.028909

Vector execution time in sec: 0.024135

Speed-up: 1.198
Scalar execution time in sec: 0.033194
Vector execution time in sec: 0.025592

Speed-up: 1.297

Fig 5.6 Loaded color (512x512) image and rotated continuously 90 degrees

	Lab 5: SIMD
	Vector programming for image processing (2)
	5.1 Image rotation
	5.1.1 Image rotation - grayscale
	5.1.1.1 Assembly code
	5.1.1.2 Test C code

	5.1.2 Image rotation - RGB
	5.1.2.1 Assembly code
	5.1.2.2 Test C code

	5.2 Image creation
	5.2.1 Image creation (square)
	5.2.1.1 Image creation (square) – assembly with vector instructions
	5.2.1.2 Image creation (square) – C test function

	5.2.2 Image creation (line)
	5.2.2.1 Image creation (line) – assembly with vector instructions
	5.2.2.2 Image creation (line) – main test program in C

	5.3 Image animation with openGL and rvv instructions
	5.3.1 Image Animation – Colors
	5.3.1.1 Image animation – colors: vector assembly: fill_color_rvv
	5.3.1.2 Image animation – colors C test program/function

	5.3.2 Image animation – rotate 90 degrees

