
Lab 5: SIMD

Vector programming for image processing (2)
In this lab, we continue developing and testing vector programming examples applied to images. We begin with
image rotation for both grayscale and color images. Next, we demonstrate image creation through two simple
examples: drawing squares and lines. Finally, we present two examples of dynamic (animated) displays using
OpenGL.

5.1 Image rotation
5.1.1 Image rotation - grayscale
The following example shows simple image rotation by 90 degrees.

5.1.1.1 Assembly code

 .text
 .globl rotate90_gray_rvv
 .align 2

rotate90_gray_rvv:
 li t6, 512 # N
 li t0, 0 # r = 0
 mv t5, t6 # stride bytes for vsse8.v: N
1: beq t0, t6, 9f # if (r == N) return
 # srow = src + r*N
 mul t1, t0, t6
 add t2, a0, t1 # t2 = srow
 # dst_ptr = dst + (N-1 - r) (starting at column 0)
 addi t3, t6, -1 # N-1
 sub t3, t3, t0 # N-1-r
 add t3, a1, t3 # t3 = &dst[0*N + (N-1-r)]
 mv t4, t6 # remaining columns in this row: rem = N

2: beqz t4, 8f # done this row?

 # Set vl (elements) for this chunk (SEW=8)
 vsetvli t1, t4, e8, m1, ta, ma # t1 = vl
 mv a2, t1 # save vl
 # Load 'vl' bytes from source row
 vle8.v v0, (t2)
 # Strided store into destination column: stride == N bytes
 vsse8.v v0, (t3), t5
 # Advance pointers: srow += vl; dst_ptr += vl*N; rem -= vl
 add t2, t2, a2 # srow += vl
 mul t1, a2, t6 # t1 = vl*N
 add t3, t3, t1 # dst_ptr += vl*N
 sub t4, t4, a2 # rem -= vl
 j 2b

8: addi t0, t0, 1 # r++
 j 1b

9: ret
--

5.1.1.2 Test C code

#include <opencv2/opencv.hpp>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#define N 512 // image is 512x512
extern "C" void rotate90_gray_rvv(const uint8_t *src, uint8_t *dst);

// ------------------- "namespace" ns_: plain C-style prefix -------------------
// 90° clockwise: (r, c) -> (c, N-1-r)
//
static void rotate90_cw_u8_c(const uint8_t *src, uint8_t *dst) {
 for (int r = 0; r < N; ++r) {
 const uint8_t *srow = src + r * N;
 for (int c = 0; c < N; ++c) {
 dst[c * N + (N - 1 - r)] = srow[c];
 }
 }
}
int main(int argc, char **argv) {
 if (argc != 4) {
 printf("Usage: %s <grayscale_512x512.png> <rot_image_ass.png> <rot_image_c>\n", argv[0]);
 return 1;

 }
 const char *in_path = argv[1];
 const char *out_path_ass = argv[2];
 const char *out_path_c = argv[3];
 clock_t startv, endv;
 clock_t start, end;
 double elapsed_secv;
 double elapsed_sec;
 // Load as 8-bit grayscale with OpenCV
 cv::Mat img = cv::imread(in_path, cv::IMREAD_GRAYSCALE);
 if (img.empty()) {
 printf("Error: could not open image: %s\n", in_path);
 return 1;
 }
 if (img.cols != N || img.rows != N) {
 printf("Error: expected %dx%d, got %dx%d\n", N, N, img.cols, img.rows);
 return 1;
 }
 if (img.type() != CV_8UC1) {
 printf("Error: expected 8-bit single-channel image.\n");
 return 1;
 }
 if (!img.isContinuous()) {
 img = img.clone(); // ensure tight rows for pointer math
 }

// Rotate using the C-style function
 uint8_t *dst_ass = (uint8_t*)malloc((size_t)N * N);
 uint8_t *dst_c = (uint8_t*)malloc((size_t)N * N);
 if (!dst_ass || !dst_c) {
 printf("Error: out of memory\n");
 return 1;
 }
 startv=clock();
 rotate90_gray_rvv(img.data, dst_ass);
 endv=clock();
 elapsed_secv = (double)(endv - startv) / CLOCKS_PER_SEC;
 printf("Vector execution time in sec: %.6f\n",elapsed_secv);
 start=clock();
 rotate90_cw_u8_c(img.data, dst_c);
 end=clock();
 elapsed_sec = (double)(end - start) / CLOCKS_PER_SEC;
 printf("Scalar execution time in sec: %.6f\n",elapsed_sec);
 printf("speed-up: %.3f\n",elapsed_sec/elapsed_secv);
 // Wrap output buffer and save with OpenCV
 cv::Mat rot_ass(N, N, CV_8UC1, dst_ass);
 cv::Mat rot_c(N, N, CV_8UC1, dst_c);
 if (!cv::imwrite(out_path_ass, rot_ass)) {
 printf("Error: failed to write %s\n", out_path_ass);
 free(dst_ass);
 return 1;
 }
 if (!cv::imwrite(out_path_c, rot_c)) {
 printf("Error: failed to write %s\n", out_path_c);
 free(dst_c);
 return 1;
 }
 printf("Wrote: %s\n", out_path_ass);
 printf("Wrote: %s\n", out_path_c);
 cv::imshow("Rotatds assembler",rot_ass);
 cv::imshow("Rotated C",rot_c);
 cv::waitKey(0);
 free(dst_ass);
 free(dst_c);
 return 0;
}
--
g++ -march=rv64gcv rotate90_gray_rvv.s rotate90_gray.cpp -o rotate90_gray $(pkg-config --cflags --
libs opencv4)
% ./rotate90_gray pictures/deer.512.512.grey.png r90_ass.png r90_c.png
Vector execution time in sec: 0.016417
Scalar execution time in sec: 0.048995

speed-up: 2.984
Wrote: r90_ass.png
Wrote: r90_c.png
--

After the compilation with optimized C++ code:

% g++ -O2 -march=rv64gcv -fopt-info-vec rotate90_gray_rvv.s rotate90_gray.cpp -o rotate90_gray $
(pkg-config --cflags --libs opencv4)
/usr/include/c++/14/bits/stl_vector.h:99:4: optimized: basic block part vectorized using 16 byte
vectors
/usr/include/opencv4/opencv2/core/types.hpp:1675:7: optimized: basic block part vectorized using 8
byte vectors
% ./rotate90_gray pictures/deer.512.512.grey.png r90_ass.png r90_c.png
Vector execution time in sec: 0.016330
Scalar execution time in sec: 0.017655

speed-up: 1.081
Wrote: r90_ass.png

Wrote: r90_c.png

Fig 5.1 Rotated grayscale image by assembler vectorized function

5.1.2 Image rotation - RGB
With the following example the program rotates 90 degrees an RGB image.

5.1.2.1 Assembly code

 .text
 .align 2
 .option push
 .option arch, +v
 .globl rotate_rgb_90ccw_rvv
a0=src, a1=srcW, a2=srcH, a3=srcStep, a4=dst, a5=dstW, a6=dstH, a7=dstStep
rotate_rgb_90ccw_rvv:
 # Basic sanity: sizes must be positive and match rotation (dstW=srcH, dstH=srcW)
 bge x0, a1, .Lret # srcW <= 0
 bge x0, a2, .Lret # srcH <= 0
 bne a5, a2, .Lret # dstW != srcH -> bail (optional)
 bne a6, a1, .Lret # dstH != srcW -> bail (optional)
 beqz a0, .Lret
 beqz a4, .Lret
 li a6, 3 # a6 = 3 (byte stride between channels for vlse/vsse)
 li t0, 0 # y = 0
================== Row loop over source rows (y = 0..srcH-1) ==================
.Lrow:
 bge t0, a2, .Lret
 # row0 = src + y*srcStep
 mul t1, t0, a3
 add t2, a0, t1 # t2 = row0 base
 # Destination column index for CCW: dx = dstW - 1 - y
 addi t3, a5, -1 # t3 = dstW - 1
 sub t3, t3, t0 # t3 = dx
 # Column byte offset = 3*dx
 slli t4, t3, 1 # 2*dx
 add t4, t4, t3 # t4 = 3*dx
 # processed x (source columns)
 li t5, 0
------------------ Vector loop across the source row (x = 0..srcW-1) ------------------
.Lcol:
 bge t5, a1, .Lnext_row
 # VL = min(remaining, VLMAX); we just set by remaining
 sub t1, a1, t5 # remaining = srcW - processed
 vsetvli t1, t1, e8, m1 # elements = remaining bytes (per channel)
 csrr t6, vl # t6 = VL (number of pixels in this chunk)
 # byte offsets:
 # src_chunk_base = row0 + 3*processed
 slli t1, t5, 1 # 2*processed
 add t1, t1, t5 # t1 = 3*processed
 add t1, t2, t1 # t1 = src_chunk_base
 # dst_row_start = dst + (processed)*dstStep
 mul t3, t5, a7
 add t3, a4, t3 # t3 = dst + processed*dstStep
 # dst_chunk_base for this column dx: add 3*dx
 add t3, t3, t4 # t3 = base of column (x-start row), at pixel column dx
 # ---------- LOAD channels from source row (stride = 3 bytes) ----------
 vlse8.v v0, (t1), a6 # v0 <- R[x .. x+VL-1]
 addi t1, t1, 1
 vlse8.v v1, (t1), a6 # v1 <- G[x .. x+VL-1]

 addi t1, t1, 1
 vlse8.v v2, (t1), a6 # v2 <- B[x .. x+VL-1]
 # ---------- STORE channels down the destination column (stride = dstStep) ----------
 vsse8.v v0, (t3), a7 # write R at (dy .. dy+VL-1, dx)
 addi t1, t3, 1
 vsse8.v v1, (t1), a7 # write G
 addi t1, t3, 2
 vsse8.v v2, (t1), a7 # write B
 # Advance processed x by VL
 add t5, t5, t6
 j .Lcol
------------------ Next source row ------------------
.Lnext_row:
 addi t0, t0, 1
 j .Lrow
.Lret:
 ret
 .option pop

5.1.2.2 Test C code

#include <opencv2/opencv.hpp>
#include <stdint.h>
#include <stdio.h>
#include <time.h>

 clock_t startv, endv;
 clock_t start, end;
 double elapsed_secv;
 double elapsed_sec;

extern "C" void rotate_rgb_90ccw_rvv(const uint8_t* src, int srcW, int srcH, int srcStep, uint8_t*
dst, int dstW, int dstH, int dstStep);

void rotate_rgb_90cw(const uint8_t* src, int srcW, int srcH, int srcStep, uint8_t* dst, int dstW,
int dstH, int dstStep)
{
 if (!src || !dst) return;
 if (dstW != srcH || dstH != srcW) {
 printf("Error: dst size must be (srcH x srcW) for 90-degree rotation.\n");
 return;
 }
 for (int y = 0; y < srcH; ++y) {
 const uint8_t* srow = src + (size_t)y * srcStep;
 for (int x = 0; x < srcW; ++x) {
 const uint8_t* spix = srow + 3 * x;
 // Mapping: (x,y) in source -> (y, dstH-1-x) in dest
 int dx = y;
 int dy = dstH - 1 - x;
 uint8_t* drow = dst + (size_t)dy * dstStep;
 uint8_t* dpix = drow + 3 * dx;
 dpix[0] = spix[0];
 dpix[1] = spix[1];
 dpix[2] = spix[2];
 }
 }
}

void rotate_rgb_90ccw(const uint8_t* src, int srcW, int srcH, int srcStep,
 uint8_t* dst, int dstW, int dstH, int dstStep)
{
 if (!src || !dst) return;
 if (dstW != srcH || dstH != srcW) {
 printf("Error: dst size must be (srcH x srcW) for 90-degree rotation.\n");
 return;
 }
 for (int y = 0; y < srcH; ++y) {
 const uint8_t* srow = src + (size_t)y * srcStep;
 for (int x = 0; x < srcW; ++x) {
 const uint8_t* spix = srow + 3 * x;
 // Mapping: (x,y) in source -> (dstW-1-y, x) in dest
 int dx = dstW - 1 - y;
 int dy = x;
 uint8_t* drow = dst + (size_t)dy * dstStep;
 uint8_t* dpix = drow + 3 * dx;
 dpix[0] = spix[0];dpix[1] = spix[1];dpix[2] = spix[2];
 }
 }
}

int main(int argc, char** argv)
{
 if (argc < 2) {
 printf("Usage: %s input.png [output.png]\n", argv[0]);
 return 1;
 }
 const char* inPath = argv[1];
 const char* outPath = (argc > 2) ? argv[2] : "rotated90.png";
 // Read color image

 cv::Mat src = cv::imread(inPath, cv::IMREAD_COLOR);
 if (src.empty()) {
 printf("Error: cannot read %s\n", inPath);
 return 2;
 }
 printf("Loaded %s: %dx%d\n", inPath, src.cols, src.rows);
 // Destination size = (srcH x srcW)
 cv::Mat dst(src.cols, src.rows, CV_8UC3);
 // Rotate 90° clockwise
 start=clock();
 rotate_rgb_90cw(src.data, src.cols, src.rows, (int)src.step, dst.data, dst.cols, dst.rows,
(int)dst.step);
 end=clock();
 elapsed_sec = (double)(end - start) / CLOCKS_PER_SEC;
 printf("Scalar execution time in sec: %.6f\n",elapsed_sec);
 startv=clock();
 rotate_rgb_90ccw_rvv(src.data, src.cols, src.rows, (int)src.step, dst.data, dst.cols, dst.rows,
(int)dst.step);
 endv=clock();
 elapsed_secv = (double)(endv - startv) / CLOCKS_PER_SEC;
 printf("Vector execution time in sec: %.6f\n",elapsed_secv);
 printf("Speed-up: %.3f\n",elapsed_sec/elapsed_secv);
 // Save & show
 cv::imwrite(outPath, dst);
 printf("Wrote rotated image: %s\n", outPath);
 cv::imshow("Original", src);
 cv::imshow("Rotated 90 CW", dst);
 printf("Press any key in the image window to exit...\n");
 cv::waitKey(0);
 return 0;
}

% g++ -march=rv64gcv rgb_rotation90_rvv.s rgb_rotation90.cpp -o rgb_rotation90 $(pkg-config --
cflags --libs opencv4)
% ./rgb_rotation90 pictures/deer.512.512.png rot_lena_color.png
Loaded lena_color.png: 512x512
Scalar execution time in sec: 0.127974
Vector execution time in sec: 0.030558

Speed-up: 4.188

After the compilation with optimized (vectorized) C code:
--
% g++ -O2 -march=rv64gcv -fopt-info-vec rgb_rotation90_rvv.s rgb_rotation90.cpp -o rgb_rotation90 $
(pkg-config --cflags --libs opencv4)
/usr/include/opencv4/opencv2/core/types.hpp:1675:7: optimized: basic block part vectorized using 8
byte vectors
/usr/include/c++/14/bits/stl_vector.h:99:4: optimized: basic block part vectorized using 16 byte
vectors
% ./rgb_rotation90 pictures/deer.512.512.png
Loaded lena_color.png: 512x512
Scalar execution time in sec: 0.033407
Vector execution time in sec: 0.029483

Speed-up: 1.133
Wrote rotated image: rotated90.png

Fig 5.2 Rotated RGB image by assembly vectorized function

5.2 Image creation
5.2.1 Image creation (square)
In this example, we explore how to create a simple grayscale image with a black background and a
generated white shape—a small square.

5.2.1.1 Image creation (square) – assembly with vector instructions
--
.text
.align 2
.option push
.option arch, +v
.globl create_square_rvv

void create_square_rvv(uint8_t* image, int center_x, int center_y, int size, uint8_t value)
a0 = image, a1 = center_x, a2 = center_y, a3 = size, a4 = value
create_square_rvv:
 # Early return if size <= 0
 blez a3, .Lret
 # Save registers
 addi sp, sp, -32
 sd s0, 0(sp)
 sd s1, 8(sp)
 sd s2, 16(sp)
 sd s3, 24(sp)
 # Calculate top-left corner: start_x = center_x - size/2
 srli t0, a3, 1 # t0 = size / 2
 sub t1, a1, t0 # t1 = start_x = center_x - size/2
 sub t2, a2, t0 # t2 = start_y = center_y - size/2
 # Clamp start coordinates to image bounds (0 <= start_x, start_y <= 511)
 li t3, 0 # t3 = 0 (min bound)
 li t4, 512 # t4 = 512 (max bound)
 # Clamp start_x to [0, 511]
 blt t1, t3, .Lclamp_x_min
 bge t1, t4, .Lclamp_x_max
 j .Lclamp_x_done
.Lclamp_x_min:
 li t1, 0
 j .Lclamp_x_done
.Lclamp_x_max:
 li t1, 511
.Lclamp_x_done:
 # Clamp start_y to [0, 511]
 blt t2, t3, .Lclamp_y_min
 bge t2, t4, .Lclamp_y_max
 j .Lclamp_y_done
.Lclamp_y_min:
 li t2, 0
 j .Lclamp_y_done
.Lclamp_y_max:
 li t2, 511
.Lclamp_y_done:
 # Calculate end coordinates
 add t5, t1, a3 # t5 = end_x = start_x + size
 add t6, t2, a3 # t6 = e.Lret:
 ret
.option pop
nd_y = start_y + size
 # Clamp end coordinates to [0, 512]
 blt t5, t3, .Lclamp_ex_min
 bge t5, t4, .Lclamp_ex_max
 j .Lclamp_ex_done
.Lclamp_ex_min:
 li t5, 0
 j .Lclamp_ex_done
.Lclamp_ex_max:
 li t5, 512
.Lclamp_ex_done:
 blt t6, t3, .Lclamp_ey_min
 bge t6, t4, .Lclamp_ey_max
 j .Lclamp_ey_done
.Lclamp_ey_min:
 li t6, 0
 j .Lclamp_ey_done
.Lclamp_ey_max:
 li t6, 512
.Lclamp_ey_done:
 # Calculate actual width and height after clamping
 sub s0, t5, t1 # s0 = actual_width
 sub s1, t6, t2 # s1 = actual_height
 # Early return if no area to fill
 blez s0, .Lcleanup
 blez s1, .Lcleanup
 # Calculate image row stride (512 bytes)
 li s2, 512 # s2 = image width (stride)
 # Calculate starting address in image buffer
 mul t3, t2, s2 # t3 = start_y * stride
 add t3, t3, t1 # t3 += start_x

 add s3, a0, t3 # s3 = image + start_y*stride + start_x
 # Broadcast the fill value to a vector register
 vsetvli t4, x0, e8, m1, ta, ma # Set SEW=8, no elements yet
 vmv.v.x v1, a4 # v1 = broadcast(value)
 # Loop through each row
 li t0, 0 # t0 = row counter
.Lrow_loop:
 bge t0, s1, .Lcleanup # Exit when all rows processed
 # Calculate current row address
 mul t1, t0, s2 # t1 = row_offset = row * stride
 add t2, s3, t1 # t2 = current_row_address
 # Fill the row using vector instructions
 mv t3, s0 # t3 = remaining width
 mv t4, t2 # t4 = current address
.Lfill_row:
 # Set vector length for this chunk
 vsetvli t5, t3, e8, m1, ta, ma # t5 = min(remaining, VLMAX)
 # Store vector to memory
 vse8.v v1, (t4)
 # Advance pointers
 add t4, t4, t5 # Move destination pointer
 sub t3, t3, t5 # Decrement remaining count
 bnez t3, .Lfill_row # Continue if more to fill
 # Next row
 addi t0, t0, 1 # row_counter++
 j .Lrow_loop
.Lcleanup:
 # Restore registers
 ld s0, 0(sp)
 ld s1, 8(sp)
 ld s2, 16(sp)
 ld s3, 24(sp)
 addi sp, sp, 32
.Lret:
 ret
.option pop

--

5.2.1.2 Image creation (square) – C test function
The following test program integrates the external create_square_rvv() function with the local scalar
function create_square_scalar(). Both functions take the same arguments and generate 512×512 pixel
images, but with different placements of the small square. The resulting image buffers are stored as .pgm files.

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#define WIDTH 512
#define HEIGHT 512
#include <time.h>

 clock_t startv, endv;
 clock_t start, end;
 double elapsed_secv;
 double elapsed_sec;
 int steps=100000;

// Assembly function prototype
extern void create_square_rvv(uint8_t* image, int center_x, int center_y, int size, uint8_t value);
// Function to save image as PGM
void save_pgm(const char *filename, uint8_t *image, int width, int height) {
 FILE *fp = fopen(filename, "wb");
 if (!fp) {
 printf("Error opening file %s\n", filename);
 return;
 }
 fprintf(fp, "P5\n%d %d\n255\n", width, height);
 size_t written = fwrite(image, 1, width * height, fp);
 fclose(fp);
 printf("Image saved as %s (%zu bytes written)\n", filename, written);
}
// Simple scalar version for comparison
void create_square_scalar(uint8_t *image, int center_x, int center_y, int size, uint8_t value) {
 if (size <= 0) return;
 int start_x = center_x - size/2;
 int start_y = center_y - size/2;
 // Clamp coordinates
 start_x = (start_x < 0) ? 0 : (start_x >= WIDTH) ? WIDTH-1 : start_x;
 start_y = (start_y < 0) ? 0 : (start_y >= HEIGHT) ? HEIGHT-1 : start_y;
 int end_x = start_x + size;
 int end_y = start_y + size;
 end_x = (end_x > WIDTH) ? WIDTH : end_x;
 end_y = (end_y > HEIGHT) ? HEIGHT : end_y;
 for (int y = start_y; y < end_y; y++) {
 for (int x = start_x; x < end_x; x++) {
 image[y * WIDTH + x] = value;
 }

 }
}

int main() {
 printf("Testing create_square_rvv function...\n");
 // Allocate and initialize image buffer
 uint8_t *image = (uint8_t *)calloc(WIDTH * HEIGHT, sizeof(uint8_t));
 if (!image) {
 printf("Memory allocation failed\n");
 return 1;
 }
 printf("Creating 10x10 white square at center (256,256)...\n");
 // Test with a simple case first
 startv=clock();
 for(int i=0;i<steps;i++) create_square_rvv(image, 256, 256, 10, 255);
 endv=clock();
 elapsed_secv = (double)(endv - startv) / CLOCKS_PER_SEC;
 printf("Vector execution time in sec: %.6f\n",elapsed_secv);
 // Verify the result by checking if any pixels were set
 int count = 0;
 for (int i = 0; i < WIDTH * HEIGHT; i++) {
 if (image[i] == 255) count++;
 }
 printf("Pixels set to white: %d (expected: 100)\n", count);
 // Save the result
 save_pgm("square_rvv.pgm", image, WIDTH, HEIGHT);
 // Test edge cases
 printf("Testing edge case: square at corner...\n");
 memset(image, 0, WIDTH * HEIGHT); // Clear image
 //create_square_rvv(image, 5, 5, 20, 255);
 start=clock();
 for(int i=0;i<steps;i++) create_square_scalar(image, 5, 5, 20, 255);
 end=clock();
 elapsed_sec = (double)(end - start) / CLOCKS_PER_SEC;
 printf("Scalar execution time in sec: %.6f\n",elapsed_sec);
 printf("Speed-up: %.3f\n",elapsed_sec/elapsed_secv);
 save_pgm("square_corner.pgm", image, WIDTH, HEIGHT);
 free(image);
 printf("Test completed successfully!\n");
 return 0;
}

% gcc -march=rv64gcv create_square_rvv.s create_square.c -o create_square -lm
% ./create_square
Testing create_square_rvv function...
Creating 10x10 white square at center (256,256)...
Vector execution time in sec: 0.012225
Pixels set to white: 100 (expected: 100)
Image saved as square_rvv.pgm (262144 bytes written)
Testing edge case: square at corner...
Scalar execution time in sec: 0.639294

Speed-up: 52.294
--

After the compilation with optimization:
--
%gcc -O2 -march=rv64gcv create_square_rvv.s create_square.c -o create_square -lm
 ./create_square
Testing create_square_rvv function...
Creating 10x10 white square at center (256,256)...
Vector execution time in sec: 0.011749
Pixels set to white: 100 (expected: 100)
Image saved as square_rvv.pgm (262144 bytes written)
Testing edge case: square at corner...
Scalar execution time in sec: 0.007318

Speed-up: 0.623
Image saved as square_corner.pgm (262144 bytes written)
Test completed successfully!

Note that the C optimization with vectorization provides better result that manual code with vector
instructions !

%display square_corner.pgm

%display square_rvv.pgm

Fig 5.3 Generated grayscale (512x512) images by C code function (square_corner.pgm) and assembler
vectorized function (square_rvv.pgm)

5.2.2 Image creation (line)
In this example we explore how to create a simple grayscale image with a black background and generated
shape: white – line.

5.2.2.1 Image creation (line) – assembly with vector instructions
--
void draw_line(uint8_t *image, int x0, int y0, int x1, int y1, uint8_t value)
a0=image, a1=x0, a2=y0, a3=x1, a4=y1, a5=value
Requires: RV64GCV + Zbb

 .text
 .align 2
 .globl draw_line_rvv
 .type draw_line_rvv, @function
 .equ WIDTH, 512
 .equ HEIGHT, 512

draw_line_rvv:
 addi sp, sp, -112
 sd ra, 0(sp)
 sd s0, 8(sp)
 sd s1, 16(sp)
 sd s2, 24(sp)
 sd s3, 32(sp)
 sd s4, 40(sp)
 sd s5, 48(sp)
 sd s6, 56(sp)
 sd s7, 64(sp)
 sd s8, 72(sp)
 sd s9, 80(sp)
 sd s10, 88(sp)
 sd s11, 96(sp)
 mv s0, a0 # image*
 mv s1, a1 # x0
 mv s2, a2 # y0
 mv s3, a3 # x1
 mv s4, a4 # y1
 mv s5, a5 # value (byte)

dx = abs(x1 - x0)
 sub t0, s3, s1
 neg t1, t0
 max s6, t0, t1 # dx
dy = abs(y1 - y0)
 sub t0, s4, s2
 neg t1, t0
 max s7, t0, t1 # dy
sx = (x0 < x1) ? 1 : -1
 li t2, 1
 li t3, -1
 blt s1, s3, 1f
 mv s8, t3
 j 2f
1: mv s8, t2
2:
sy = (y0 < y1) ? 1 : -1
 blt s2, s4, 3f
 mv s9, t3
 j 4f
3: mv s9, t2
4:
err = dx - dy
 sub s10, s6, s7

--- Fast paths
 beqz s7, .HORIZ_PATH # dy == 0
 beqz s6, .VERT_PATH # dx == 0
 j .BRESENHAM

Horizontal line

.HORIZ_PATH:
 bltz s2, .DONE
 li t4, HEIGHT
 bgeu s2, t4, .DONE
 min t5, s1, s3 # x_start
 max t6, s1, s3 # x_end
 max t5, t5, x0 # clamp start to 0
 li t1, WIDTH-1 # (replaces former t7)
 minu t6, t6, t1 # clamp end to WIDTH-1
 bgt t5, t6, .DONE
 li t0, WIDTH
 mul t1, s2, t0 # y*WIDTH
 add t1, t1, t5 # + x_start
 add t1, s0, t1 # start ptr
 sub t2, t6, t5
 addi t2, t2, 1 # len

.HORIZ_LOOP:
 beqz t2, .DONE
 vsetvli t3, t2, e8,m1,ta,ma
 vmv.v.x v1, s5
 vse8.v v1, (t1)
 csrr t4, vl
 add t1, t1, t4
 sub t2, t2, t4
 j .HORIZ_LOOP

Vertical line

.VERT_PATH:
 bltz s1, .DONE
 li t4, WIDTH
 bgeu s1, t4, .DONE
 min t5, s2, s4 # y_start
 max t6, s2, s4 # y_end
 max t5, t5, x0 # clamp start to 0
 li t1, HEIGHT-1 # (replaces former t7)
 minu t6, t6, t1 # clamp end to HEIGHT-1
 bgt t5, t6, .DONE
 li t0, WIDTH
 mul t1, t5, t0
 add t1, t1, s1
 add t1, s0, t1 # base
 sub t2, t6, t5
 addi t2, t2, 1 # len
 mv t5, t0 # stride = WIDTH

.VERT_LOOP:
 beqz t2, .DONE
 vsetvli t3, t2, e8,m1,ta,ma
 vmv.v.x v1, s5
 vsse8.v v1, (t1), t5
 csrr t4, vl
 mul t4, t4, t5 # advance = vl * stride
 add t1, t1, t4
 sub t2, t2, t3
 j .VERT_LOOP

General Bresenham (scalar)

.BRESENHAM:
.BRESE_LOOP:
 bltz s1, .SKIP_PX
 bltz s2, .SKIP_PX
 li t0, WIDTH
 bgeu s1, t0, .SKIP_PX
 li t1, HEIGHT
 bgeu s2, t1, .SKIP_PX
 mul t2, s2, t0 # y*WIDTH
 add t2, t2, s1 # + x
 add t2, s0, t2 # ptr
 sb s5, 0(t2)
.SKIP_PX:
 beq s1, s3, 1f
 bne s2, s4, 2f
1: beq s2, s4, .DONE

2: slli t3, s10, 1 # e2 = 2*err
 neg t4, s7
 ble t3, t4, 3f # if (e2 > -dy)
 sub s10, s10, s7
 add s1, s1, s8
3:
 bge t3, s6, 4f # if (e2 < dx)
 add s10, s10, s6
 add s2, s2, s9
4: j .BRESE_LOOP

.DONE:
 ld ra, 0(sp)
 ld s0, 8(sp)
 ld s1, 16(sp)
 ld s2, 24(sp)
 ld s3, 32(sp)
 ld s4, 40(sp)
 ld s5, 48(sp)
 ld s6, 56(sp)
 ld s7, 64(sp)
 ld s8, 72(sp)
 ld s9, 80(sp)
 ld s10, 88(sp)
 ld s11, 96(sp)
 addi sp, sp, 112
 ret

5.2.2.2 Image creation (line) – main test program in C
--

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#define WIDTH 512
#define HEIGHT 512
clock_t startv, endv;
clock_t start, end;
double elapsed_secv;
double elapsed_sec;
int steps=100000;

// Assembly function (RV64GCV+Zbb) you already have:
extern "C" void draw_line_rvv(uint8_t *image,
 int x0, int y0,
 int x1, int y1,
 uint8_t value);

/* Unbiased random integer in [0, n-1] using rejection sampling */
static unsigned rand_bounded(unsigned n) {
 unsigned limit = RAND_MAX - (RAND_MAX % n); // largest multiple of n ≤ RAND_MAX
 unsigned r;
 do {
 r = (unsigned)rand();
 } while (r >= limit);
 return r % n;
}
// Function to draw a line between two points using Bresenham's algorithm
void draw_line(uint8_t *image, int x0, int y0, int x1, int y1, uint8_t value) {
 int dx = abs(x1 - x0);
 int dy = abs(y1 - y0);
 int sx = (x0 < x1) ? 1 : -1;
 int sy = (y0 < y1) ? 1 : -1;
 int err = dx - dy;
 while (1) {
 if (x0 >= 0 && x0 < WIDTH && y0 >= 0 && y0 < HEIGHT) {
 image[y0 * WIDTH + x0] = value;
 }
 if (x0 == x1 && y0 == y1) break;
 int e2 = 2 * err;
 if (e2 > -dy) {
 err -= dy;
 x0 += sx;
 }
 if (e2 < dx) {
 err += dx;
 y0 += sy;
 }
 }
}
// Write an 8-bit grayscale PGM (binary P5)
static int write_pgm(const char *path, const uint8_t *img, int w, int h)
{
 FILE *f = fopen(path, "wb");
 if (!f) {
 perror("fopen");
 return -1;
 }
 // P5 header: magic, width height, maxval
 if (fprintf(f, "P5\n%d %d\n255\n", w, h) < 0) {
 perror("fprintf");
 fclose(f);
 return -1;
 }
 size_t n = (size_t)w * (size_t)h;
 if (fwrite(img, 1, n, f) != n) {
 perror("fwrite");
 fclose(f);
 return -1;
 }
 fclose(f);
 return 0;
}

// Optional helper to clear image
static void clear_image(uint8_t *img, uint8_t value)
{
 memset(img, value, (size_t)WIDTH * (size_t)HEIGHT);
}
int main(void)
{
 // Allocate framebuffer
 uint8_t *image = (uint8_t*)malloc((size_t)WIDTH * (size_t)HEIGHT);
 if (!image) {
 fprintf(stderr, "Out of memory\n");
 return 1;

 }
 int x0=rand_bounded(512);
 int x1=rand_bounded(512);
 int y0=rand_bounded(512);
 int y1=rand_bounded(512);
 // Border box
 clear_image(image, 0);
 startv=clock();
 for(int i=0;i<steps;i++) {
 draw_line_rvv(image, x0, x1, y0, y1, 255);
 }
 endv=clock();
 elapsed_secv = (double)(endv - startv) / CLOCKS_PER_SEC;
 printf("Vector execution time in sec: %.6f\n",elapsed_secv);
 // Border box
 clear_image(image, 0);
 start=clock();
 for(int i=0;i<steps;i++) {
 draw_line(image, x0, x1, y0, y1, 255);
 }
 end=clock();
 elapsed_sec = (double)(end - start) / CLOCKS_PER_SEC;
 printf("Scalar execution time in sec: %.6f\n",elapsed_sec);
 printf("Speed-up: %.3f\n",elapsed_sec/elapsed_secv);
 // Save as PGM
 const char *out_path = "output.pgm";
 if (write_pgm(out_path, image, WIDTH, HEIGHT) != 0) {
 fprintf(stderr, "Failed to write %s\n", out_path);
 free(image);
 return 1;
 }
 printf("Wrote %s (%dx%d)\n", out_path, WIDTH, HEIGHT);
 free(image);
 return 0;
}
--
% g++ -march=rv64gcvzbb draw_line_rvv.s draw_line.c -o draw_line
% ./draw_line
Vector execution time in sec: 0.424019
Scalar execution time in sec: 1.388368

Speed-up: 3.274
Wrote output.pgm (512x512)

After C code optimization:
--
% g++ -O2 -march=rv64gcvzbb draw_line_rvv.s draw_line.c -o draw_line
% ./draw_line
Vector execution time in sec: 0.421635
Scalar execution time in sec: 0.223875

Speed-up: 0.531
Wrote output.pgm (512x512)
--

Note that the C optimization with vectorization provides better result that manual code with vector
instructions !

Fig 5.4 Generated grayscale (512x512) image by C code function (draw_line.c) and assembler vectorized
function (draw_line_rvv.s)

--

To do
Analyze, compile and execute the above example program.

Note that we are using vector (v) and binary (zbb) extension instructions (rv64gcvzbb).

Take closer look at the following instructions:

 min t5, s1, s3 # x_start
 max t6, s1, s3 # x_end
 max t5, t5, x0 # clamp start to 0

5.3 Image animation with openGL and rvv instructions
In these examples, we make use of OpenGL functionalities. With this library, image frames are rendered
directly into a byte buffer for display. This approach enables the creation of animation examples accelerated
with vector instructions.

5.3.1 Image Animation – Colors
In the first example, we generate random color values (applied uniformly to all pixels) and render them into the
image buffer.

5.3.1.1 Image animation – colors: vector assembly: fill_color_rvv

-march=rv32gcv -mabi=ilp32 OR
-march=rv64gcv -mabi=lp64
void fill_color_rvv(uint8_t *buffer, uint8_t r, uint8_t g, uint8_t b)

 .text
 .align 2
 .globl fill_color_rvv
 .type fill_color_rvv, @function

 .equ WIDTH, 640
 .equ HEIGHT, 480
 .equ ROWBYTES, WIDTH*3 # 1920 bytes per row

fill_color_rvv:
 # a0 = buffer, a1 = r, a2 = g, a3 = b
 mv t0, a0 # t0 = base pointer to current row
 li t5, HEIGHT # t5 = rows remaining
 beqz t5, .Ldone
 li t6, 3 # t6 = stride (3 bytes between consecutive elements)

.Lrow:
 mv t2, t0 # t2 = R start (row + 0)
 addi t3, t0, 1 # t3 = G start (row + 1)
 addi t4, t0, 2 # t4 = B start (row + 2)
 li a4, WIDTH # a4 = pixels remaining in this row

.Lxloop:
 vsetvli t1, a4, e8, m1, ta, ma # t1 = VL (number of pixels this chunk)
 # Broadcast (r,g,b) across VL elements
 vmv.v.x v0, a1 # v0 := r
 vmv.v.x v1, a2 # v1 := g
 vmv.v.x v2, a3 # v2 := b
 # Strided vector stores: write RGB planes with stride = 3 bytes
 vsse8.v v0, 0(t2), t6 # row[0], row[3], row[6], ...
 vsse8.v v1, 0(t3), t6 # row[1], row[4], row[7], ...
 vsse8.v v2, 0(t4), t6 # row[2], row[5], row[8], ...
 # Decrement pixels remaining in this row
 sub a4, a4, t1
 # Compute increment = VL * 3 without using t7
 slli a5, t1, 1 # a5 = VL * 2
 add a5, a5, t1 # a5 = VL * 3
 # Advance channel pointers by increment
 add t2, t2, a5
 add t3, t3, a5
 add t4, t4, a5
 bnez a4, .Lxloop # more pixels in this row?
 # Next row
 addi t5, t5, -1
 addi t0, t0, ROWBYTES
 bnez t5, .Lrow

.Ldone:
 ret
 .size fill_color_rvv, .-fill_color_rvv

--

5.3.1.2 Image animation – colors C test program/function
--
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#define WIDTH 640
#define HEIGHT 480

extern "C" void fill_color_rvv(uint8_t *buffer, uint8_t r, uint8_t g, uint8_t b);

static GLuint tex = 0;
static uint8_t *frame = NULL;
static int color_index = 0; // 0 = red, 1 = green, 2 = blue

static int color_red = 0;
static int color_green = 0;
static int color_blue = 0;

static void fill_color(uint8_t *buffer , uint8_t r, uint8_t g, uint8_t b)
{
 for (int y = 0; y < HEIGHT; ++y) {
 uint8_t *row = buffer + (size_t)y * WIDTH * 3;
 for (int x = 0; x < WIDTH; ++x) {
 row[3*x + 0] = r;
 row[3*x + 1] = g;
 row[3*x + 2] = b;
 }
 }
}

static void init_texture(void)
{
 frame = (unsigned char*)malloc((size_t)WIDTH * HEIGHT * 3);
 if (!frame) { fprintf(stderr, "OOM\n"); exit(1); }
 glGenTextures(1, &tex);
 glBindTexture(GL_TEXTURE_2D, tex);
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, WIDTH, HEIGHT, 0,
 GL_RGB, GL_UNSIGNED_BYTE, NULL);
}

static void reshape(int w, int h)
{
 glViewport(0, 0, w, h);
 glMatrixMode(GL_PROJECTION); glLoadIdentity();
 gluOrtho2D(0.0, (GLdouble)WIDTH, 0.0, (GLdouble)HEIGHT);
 glMatrixMode(GL_MODELVIEW); glLoadIdentity();
}

static void display(void)
{
 clock_t startv, endv;
 clock_t start, end;
 double elapsed_secv;
 double elapsed_sec;
 int step=10;
 startv=clock();
 for(int i=0;i<step;i++) fill_color_rvv(frame,color_red, color_green, color_blue);
 endv=clock();
 elapsed_secv = (double)(endv - startv) / CLOCKS_PER_SEC;
 printf("Vector execution time in sec: %.6f\n",elapsed_secv);
 start=clock();
 for(int i=0;i<step;i++) fill_color(frame,color_red, color_green, color_blue);
 end=clock();
 elapsed_sec = (double)(end - start) / CLOCKS_PER_SEC;
 printf("Scalar execution time in sec: %.6f\n",elapsed_sec);
 printf("Speed-up: %.3f\n",elapsed_sec/elapsed_secv);
 // Upload frame
 glBindTexture(GL_TEXTURE_2D, tex);
 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, WIDTH, HEIGHT,
 GL_RGB, GL_UNSIGNED_BYTE, frame);
 // Draw
 glClear(GL_COLOR_BUFFER_BIT);
 glEnable(GL_TEXTURE_2D);
 glBegin(GL_QUADS);
 glTexCoord2f(0.f, 0.f); glVertex2f(0.f, 0.f);
 glTexCoord2f(1.f, 0.f); glVertex2f(WIDTH, 0.f);
 glTexCoord2f(1.f, 1.f); glVertex2f(WIDTH, HEIGHT);
 glTexCoord2f(0.f, 1.f); glVertex2f(0.f, HEIGHT);
 glEnd();
 glDisable(GL_TEXTURE_2D);
 glutSwapBuffers();
}

static void timer(int value)
{
 (void)value;
 // Move to next color
 //color_index = (color_index + 1) % 3;
 color_red = rand()%256; // (color_red + 1) % 256;
 color_green = rand()%256; //(color_green + 1) % 256;
 color_blue = rand()%256; //(color_blue + 1) % 256;
 glutPostRedisplay();
 glutTimerFunc(100, timer, 0); // change color every 1 second
}

int main(int argc, char **argv)
{
 srand(time(NULL));
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);

 glutInitWindowSize(WIDTH, HEIGHT);
 glutCreateWindow("Simple RGB Animation (640x480)");
 glClearColor(0.f, 0.f, 0.f, 1.f);
 reshape(WIDTH, HEIGHT);
 init_texture();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutTimerFunc(0, timer, 0);
 glutMainLoop();
 free(frame);
 return 0;
}
--

% g++ -march=rv64gcv fill_color.c fill_color_rvv.s -o fill_color -lGLU -lglut -lGL
% ./fill_color
MESA: error: ZINK: vkEnumeratePhysicalDevices failed (VK_ERROR_INITIALIZATION_FAILED)
MESA: error: ZINK: failed to choose pdev
glx: failed to create drisw screen
Vector execution time in sec: 0.012705
Scalar execution time in sec: 0.090637

Speed-up: 7.134
Vector execution time in sec: 0.010012
Scalar execution time in sec: 0.090785

Speed-up: 9.068

After the compilation with optimization:
--
% g++ -O2 -march=rv64gcv -fopt-info-vec fill_color.c fill_color_rvv.s -o fill_color -lGLU -lglut -
lGL
fill_color.c:24:27: optimized: loop vectorized using variable length vectors
% ./fill_color
WARNING: Some incorrect rendering might occur because the selected Vulkan device (PowerVR B-Series
BXE-2-32 MC1) doesn't support base Zink requirements: feats.features.fillModeNonSolid
DRI3 not available
Vector execution time in sec: 0.013101
Scalar execution time in sec: 0.005844

Speed-up: 0.446
Vector execution time in sec: 0.012548
Scalar execution time in sec: 0.005848
Speed-up: 0.466
Vector execution time in sec: 0.010299
Scalar execution time in sec: 0.005862

Speed-up: 0.569

--

Fig 5.5 Generated color (640x480) frame displayed by openGL function.

5.3.2 Image animation – rotate 90 degrees
In the following example we take (load) an image (.png) using openCV image read function.

Than we use the byte buffer as an input to rotate 90 degrees function. These function is called by animation timer
in order to produce new (rotated) image and project it on the video memory frame.
--

rotate90_rvv.s
a0 = src (u8*)
a1 = dst (u8*)
a2 = N (size_t, width==height)
#
dst[(c*N + (N-1-r))*3 + k] = src[((r*N + c)*3) + k], k=0..2

 .text
 .globl rotate90_rvv
 .align 2
rotate90_rvv:
 beqz a2, .Lret # if (N==0) return
 li t5, 3 # bytes per pixel
 mul a3, a2, t5 # a3 = row_stride = N*3 (bytes)
 mv a4, a3 # a4 = dst column stride = N*3
 li t0, 0 # r = 0
.Lrow:
 beq t0, a2, .Lret # for (r = 0; r < N; ++r)
 # srow = src + r*row_stride
 mul t2, t0, a3
 add t2, a0, t2 # t2 = srow
 # dptr = dst + (N-1-r)*3
 addi t3, a2, -1 # N-1
 sub t3, t3, t0 # N-1-r
 mul t3, t3, t5 # *3
 add t3, a1, t3 # t3 = dptr (base for c=0)
 mv t6, a2 # rem = N columns left
.Lcol:
 beqz t6, .Lnext_row
 # Set vl for this chunk (SEW=8, LMUL=1)
 vsetvli t1, t6, e8, m1, ta, ma # t1 = vl
 # Load vl RGB triplets from source row (unit stride)
 # -> v0=R, v1=G, v2=B
 vlseg3e8.v v0, (t2)
 # Store to rotated column with stride = N*3 bytes
 vssseg3e8.v v0, (t3), a4
 # srow += 3*vl (t4 = 2*vl + vl)
 slli t4, t1, 1 # t4 = 2*vl
 add t4, t4, t1 # t4 = 3*vl
 add t2, t2, t4
 # dptr += (N*3)*vl
 mul t4, t1, a4 # t4 = vl * (N*3)
 add t3, t3, t4
 sub t6, t6, t1 # rem -= vl
 j .Lcol

.Lnext_row:
 addi t0, t0, 1 # r++
 j .Lrow

.Lret:
 ret

--
// cv_opengl_drawpixels_rotate_512.cpp
// Keep one CPU buffer (RGB, 8UC3, 512x512). Every 2s, rotate it 90° CW
// and display via glDrawPixels.
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <vector>
#include <opencv2/opencv.hpp>
#if defined(__APPLE__)
 #include <OpenGL/gl.h>
 #include <GLUT/glut.h>
#else
 #include <GL/gl.h>
 #include <GL/glu.h>
 #include <GL/glut.h>
#endif
static constexpr int W = 512;
static constexpr int H = 512;
static std::vector<uint8_t> gBuf; // current image buffer (W*H*3, RGB)
static std::vector<uint8_t> gTmp; // scratch for rotation
static int gWinW = W, gWinH = H;
static unsigned long gTick = 0;

clock_t startv, endv, start, end;
double elapsed_secv, elapsed_sec;
int steps=10;

extern "C" void rotate90_rvv(const uint8_t* src, uint8_t* dst, size_t N);

// Inject: copy an RGB Mat (512x512, 8UC3) into gBuf
static void injectImageToBuffer(const cv::Mat& rgb) {
 if (rgb.cols != W || rgb.rows != H || rgb.type() != CV_8UC3) return;
 const size_t bytes = (size_t)W * H * 3;
 if (!rgb.isContinuous()) {
 cv::Mat tmp = rgb.clone();
 memcpy(gBuf.data(), tmp.data, bytes);
 } else {
 memcpy(gBuf.data(), rgb.data, bytes);
 }
}

// Rotate 90° CW: (r,c) -> (c, N-1-r). Operates on RGB interleaved.
static void rotate90_cw_rgb(const uint8_t* src, uint8_t* dst) {

 const int N = W; // 512
 for (int r = 0; r < N; ++r) {
 for (int c = 0; c < N; ++c) {
 const int si = (r * N + c) * 3;
 const int di = (c * N + (N - 1 - r)) * 3;
 dst[di + 0] = src[si + 0]; dst[di + 1] = src[si + 1];
 dst[di + 2] = src[si + 2];
 }
 }
}

static void displayCB() {
 glClear(GL_COLOR_BUFFER_BIT);
 glMatrixMode(GL_PROJECTION); glLoadIdentity();
 glMatrixMode(GL_MODELVIEW); glLoadIdentity();
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
 // Draw with origin upper-left: flip Y via negative PixelZoom
 glRasterPos2f(-1.f, 1.f);
 glPixelZoom((float)gWinW / W, -(float)gWinH / H);
 glDrawPixels(W, H, GL_RGB, GL_UNSIGNED_BYTE, gBuf.data());
 glPixelZoom(1.f, 1.f);
 glutSwapBuffers();
}

static void reshapeCB(int w, int h) {
 gWinW = (w > 1) ? w : 1;
 gWinH = (h > 1) ? h : 1;
 glViewport(0, 0, gWinW, gWinH);
}

static void keyCB(unsigned char key, int, int) {
 if (key == 27 || key == 'q') { // ESC / q
#ifdef FREEGLUT
 //glutLeaveMainLoop();
#endif
 exit(0);
 }
 if (key == 'r') { // rotate immediately
 rotate90_cw_rgb(gBuf.data(), gTmp.data());
 gBuf.swap(gTmp);
 glutPostRedisplay();
 }
 if (key == 'o') { // reload original file on demand (no path stored here)
 // noop placeholder; reload logic can be added if you store the path
 }
}

// Every 2000 ms: rotate current buffer 90° CW, update title, redraw
static void timerCB(int) {
 ++gTick;
 start=clock();
 for(int i=0;i<steps;i++) rotate90_cw_rgb(gBuf.data(), gTmp.data());
 end=clock();
 elapsed_sec = (double)(end - start) / CLOCKS_PER_SEC;
 printf("Scalar execution time in sec: %.6f\n",elapsed_sec);
 startv=clock();
 for(int i=0;i<steps;i++) rotate90_cw_rgb_ass(gBuf.data(), gTmp.data(), 512);
 endv=clock();
 elapsed_secv = (double)(endv - startv) / CLOCKS_PER_SEC;
 printf("Vector execution time in sec: %.6f\n",elapsed_secv);
 printf("Speed-up: %.3f\n",elapsed_sec/elapsed_secv);
 gBuf.swap(gTmp);
 char title[160];
 snprintf(title, sizeof(title), "Pixels 512x512 — rotate 90 CW");
 glutSetWindowTitle(title);
 glutPostRedisplay();
 glutTimerFunc(200, timerCB, 0); // re-arm for 2s
}

static bool loadAndPrep(const char* path) {
 cv::Mat src = cv::imread(path, cv::IMREAD_UNCHANGED);
 if (src.empty()) {
 printf("Error: cannot open %s\n", path);
 return false;
 }
 if (src.cols != W || src.rows != H) {
 printf("Note: input is %dx%d, resizing to %dx%d.\n", src.cols, src.rows, W, H);
 cv::resize(src, src, cv::Size(W, H), 0, 0, cv::INTER_AREA);
 }
 cv::Mat rgb;
 if (src.channels() == 1) cv::cvtColor(src, rgb, cv::COLOR_GRAY2RGB);
 else if (src.channels() == 3) cv::cvtColor(src, rgb, cv::COLOR_BGR2RGB);
 else if (src.channels() == 4) cv::cvtColor(src, rgb, cv::COLOR_BGRA2RGB);
 else {
 printf("Unsupported channel count: %d\n", src.channels());
 return false;
 }
 injectImageToBuffer(rgb);
 return true;
}

int main(int argc, char** argv) {
 if (argc != 2) {
 printf("Usage: %s <image_512x512.(png|jpg|...)>\n", argv[0]);
 return 1;
 }
 gBuf.resize((size_t)W * H * 3);
 gTmp.resize((size_t)W * H * 3);
 if (!loadAndPrep(argv[1])) return 1;
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
 glutInitWindowSize(W, H);
 glutCreateWindow("Pixels 512x512 — rotate 90cw degrees per tick");
 glClearColor(0.f, 0.f, 0.f, 1.f);
 glutDisplayFunc(displayCB);
 glutReshapeFunc(reshapeCB);
 glutKeyboardFunc(keyCB);
 glutTimerFunc(2000, timerCB, 0); // start periodic rotation
 glutMainLoop();
 return 0;
}
--
% g++ -march=rv64gcv cvgl_ro90.cpp rotate90_rvv.s -o cvgl_rot90 -lGLU -lglut -lGL $(pkg-config --
cflags --libs opencv4)
% ./cvgl_rot90 lena_color.png
Scalar execution time in sec: 0.123390
Vector execution time in sec: 0.023632

Speed-up: 5.221
Scalar execution time in sec: 0.123920
Vector execution time in sec: 0.023594

Speed-up: 5.252
Scalar execution time in sec: 0.123773
Vector execution time in sec: 0.023662
--

After the optimzation:
--
% g++ -O2 -march=rv64gcv -fopt-info-vec cvgl_ro90.cpp rotate90_rvv.s -o cvgl_rot90 -lGLU -lglut -lGL
$(pkg-config --cflags --libs opencv4)
/usr/include/c++/14/bits/stl_vector.h:114:13: optimized: basic block part vectorized using 16 byte
vectors
/usr/include/opencv4/opencv2/core/types.hpp:1679:7: optimized: basic block part vectorized using 8
byte vectors
/usr/include/c++/14/bits/stl_vector.h:99:4: optimized: basic block part vectorized using 16 byte
vectors

% ./cvgl_rot90 pictures/deer.512.512.png
WARNING: Some incorrect rendering might occur because the selected Vulkan device (PowerVR B-Series
BXE-2-32 MC1) doesn't support base Zink requirements: feats.features.fillModeNonSolid
DRI3 not available
Scalar execution time in sec: 0.028909
Vector execution time in sec: 0.024135

Speed-up: 1.198
Scalar execution time in sec: 0.033194
Vector execution time in sec: 0.025592

Speed-up: 1.297

Fig 5.6 Loaded color (512x512) image and rotated continuously 90 degrees

	Lab 5: SIMD
	Vector programming for image processing (2)
	5.1 Image rotation
	5.1.1 Image rotation - grayscale
	5.1.1.1 Assembly code
	5.1.1.2 Test C code

	5.1.2 Image rotation - RGB
	5.1.2.1 Assembly code
	5.1.2.2 Test C code

	5.2 Image creation
	5.2.1 Image creation (square)
	5.2.1.1 Image creation (square) – assembly with vector instructions
	5.2.1.2 Image creation (square) – C test function

	5.2.2 Image creation (line)
	5.2.2.1 Image creation (line) – assembly with vector instructions
	5.2.2.2 Image creation (line) – main test program in C

	5.3 Image animation with openGL and rvv instructions
	5.3.1 Image Animation – Colors
	5.3.1.1 Image animation – colors: vector assembly: fill_color_rvv
	5.3.1.2 Image animation – colors C test program/function

	5.3.2 Image animation – rotate 90 degrees

