Lab 2: SIMD
Vector programming and processing 1

In this first programming and processing lab, we will write and run several simple examples that are well suited
for vector (SIMD) processing.

Each studied example is composed of two parts:
e A main program with the function under test, written in C, and
¢ The same function reimplemented in assembly code using the RISC-V vector extensions.

In this lab we focus on simple arithmetic functions such as vector addition, matrix multiplication, and the
scalar (dot) product. These exercises introduce the basic principles and functionality of vector programming
and processing. We will use different data types, including bytes (int8_t), integers (int32_t), and floating-
point types.

After assembling and linking the programs, we obtain executable code that can be tested directly on our
development board.

This enables us to compare the execution times of scalar and vector implementations and to evaluate the
resulting speedup, which depends on both the data type and the vector/matrix size.

For each example, we also explain the role and meaning of the vector instructions used in the program. In this
context, it is assumed that the reader is already familiar with the basic constructs of the C programming
language.

2.1 Adding two vectors

The simplest starting example is the addition of two vectors. Since the X60 processors on the K1 SoC
integrate a vector processing unit with a register block consisting of 32 registers, each 256 bits wide, we can
easily determine the level of parallelism.

Floating-Point Register File General Purpose Register File
T vimwwf T vimvovx
wimvfs wvimvsf vmvk.s vimvex
l l l e 32 elements for 8-bit data (bytes),
VRF - Vector Register File * 16 elements for 16-bit data (half-words),
| vo | * 8 elements for 32-bit data (words:
| vi | integers or single-precision floats),
¢ 4 elements for 64-bit data (double
| “'Iz | words: long integers or double-precision
. floats).
|
| v31 |
< VLEN - 256-bits >

Fig 2.1 Vector register block of RISC-V with 256-bit vector extension - RV64GCCV
Our first example starts with bytes.

2.1.1 vector_byte_add.c and vector_byte_add_rvv.s
The first part of the example is written in plain C code (including external rvv function):

endv=clock() ;
elapsed_secv =
start=clock();

end=clock();
elapsed_sec =

for (int i =

WWWWWWWWINNNMNNNNMNMNNDN
NouubhWNRPOWVWOdg LBWNRO

return O0;
38 }

0;

1 // vector_byte_add.c

2 #include <stdio.h>

3 #include <stdint.h>

4 #include <stddef.h>

5 #include <time.h>

6 // external assembly function

7 extern void vector_byte_add_rvv(const int8_t *a, const int8_t *b, int8_t *c,
8

9 int main(void) {
10 clock_t startv, endv;
11 clock_t start, end;
12 double elapsed_secv;
13 double elapsed_sec;
14 const int N = 32;
15 int8_t a[N], b[N], c[N];
16 int steps=1000000;
17 // Initialize test vectors

18 for (int i = 0; i < N; i++) { a[i] = i; b[i] = i * 2; }
19 startv=clock();
// Call vector addition
for (int i=0;i<steps;i++) vector_byte_add_rvv(a, b, c, N);

(double) (endv - startv) / CLOCKS_PER_SEC;

for (int i=0;i<steps;i++)

{ for(int 3j=0;3<32;3j++) c[j]

i< N;

afi],

a[jl + bl[3jl;}

(double) (end - start) / CLOCKS_PER_SEC;
// Print results
printf ("Addition result:\n");
it+) {
printf ("%d + %d = %d\n",

b[i], c[i]);

printf ("Vector execution time: %.6f sec\n",elapsed_secv);
printf ("Scalar execution time:
printf ("Speed-up: %.3f \n",elapsed_sec/elapsed_secv);

%.6f sec\n",elapsed_sec);

size_t n);

.text

.globl vector_byte_.

vector_byte_add_rvv:
beqz a3, .Ldone

.Lloop:

add_rvv

if n == 0,

Choose VL for remaining elements,
TA/MA: tail-agnostic, mask-agnostic
to0

vsetvli t0, a3,
vlie8.v v0, (a0)
vle8.v vl, (al)
Vector add

vadd.vv v2, v0, vl

Store result to c

vse8.v v2, (a2)

Advance pointers by VL * sizeof (int32_t) =

e8,
Load a chunk from a and b

ml, ta,

ma

e8 lanes,

v0 <-
vl <-

return

LMUL=1.
(simple and fast).

:= VL (number of lanes we'll process)
ali i+VL-1]
b[i i+VL-1]

v2 <- v0 + vl

tl

VL * 4
VL * 4 (bytes)

Decrease remaining element count by VL and loop

addi tl, t0, 1
add a0, a0, t1
add al, al, t1
add a2, a2, ti1
sub a3, a3, to
bnez a3, .Lloop
.Ldone:
ret

%$gcc —march=rv64gcv vector_byte_add_rvv.s vector byte_add.c -o vector_ byte_add

% ./vector_byte_add

Vector addition result:

30 + 60 = 90
31 + 62 = 93
Vector execution time:
Scalar execution time:
Speed-up: 1.355 sec..
30 + 60 = 90
31 + 62 = 93
Vector execution time:
Scalar execution time:

Speedup: 34.540

0.013217
0.017914

0.020161
0.696353

sec
sec

sec
sec

Now let us recompile the same example with -01 and -02 options:

% gcc -02 -march=rvé4gcv —-fopt-info-vec vector_byte_add_rvv.s vector_byte_add.c -o vector_byte_add
vector_byte_add.c:26:21: optimized: loop vectorized using 16 byte vectors
vector_byte_add.c:18:23: optimized: loop vectorized using 4 byte vectors

% ./vector_byte_add

30 + 60 = 90
31 + 62 = 93
Vector execution time: 0.013217 sec
Scalar execution time: 0.017914 sec

Speed-up: 1.355 sec

Code explanation

1. Function Entry and Zero-Check

beqgz a3, .Ldone # if n == 0, return

Purpose: Checks if the number of elements n (in register a3) is zero.
e Action: If n==0, it branches to the . Ldone label and returns immediately. This handles the edge case
efficiently.
2. Vector Configuration (The Heart of RVV)

.Lloop:
vsetvli t0,a3,e8,ml,ta,ma # t0:=VL (number of lanes to process)

vsetvli (Set Vector Length): This is the most critical instruction. It configures the vector unit and
determines how many elements will be processed in this loop iteration.

e t0: The destination register that will hold the actual Vector Length (VL) for this iteration.

e a3: The source register, which is the number of elements remaining to be processed.

¢ e8: Element width is 8 bits (a byte). This means each "lane" in the vector register holds one
byte.

e ml: LMUL=1 (Vector Register Grouping multiplier of 1). This means we are using single vector
registers (e.g., v0, v1), not groups of them.

e ta, ma: Tail Agnostic and Mask Agnostic. This tells the hardware it doesn't need to
preserve the values in the leftover lanes (tail) or mask bits beyond the active VL, which is the
fastest option for simple loops like this.

¢ Result: The hardware calculates the maximum number of elements (VL) it can process in one go
based on the available vector register length (VLEN) and the requested configuration (e8, m1), but
without exceeding the remaining count a3. This value is placed in t0.

3. Loading Data into Vector Registers
vlie8.v vO0, (a0l) # v0O <- a[i .. i+VL-1]
vlie8.v vl, (al) # vl <- b[i .. i+VL-1]

vlie8.v (Vector Load Element (8-bit)): These instructions load contiguous data from memory into vector
registers.

e v0, (a0):Loads VL (from t0) bytes from the memory address in a0 into vector register vO0.
e v1, (al):Loads VL bytes from the memory address in al into vector register v1.

¢ The processor only reads/writes the number of bytes specified by VL, making it safe even if the pointers
are near the end of a page.

4. The Actual Computation (Vector Addition):
vadd.vv v2, v0, vl # v2 <= v0 + v1

vadd.vv (Vector Add Vector-Vector): This performs the element-wise addition.

e v2: Destination vector register. Each lane in v2 will hold the sum of the corresponding lanes in
v0 and v1.

e v0, v1:Source operand vector registers.
e The operation is performed on all VL active lanes in parallel.

5. Storing the Result
vse8.v v2, (a2)

vse8.v (Vector Store Element (8-bit)): This instruction stores data from a vector register back to memory.

* v2, (a2): Stores VL bytes from vector register v2 to the memory address in a2 (the
destination pointer c).

6. Pointer Arithmetic

addi tl, t0, O # tl = VL * 1 (bytes)
add a0, a0, t1
add al, al, t1
add a2, a2, ti1

Purpose: Advances all three pointers (a0, al, a2) by the number of bytes we just processed to prepare for the
next chunk.

e addi tl1, tO0, 0: Thisinstruction isincorrect. It simply copies t0 (VL) to t1. Since we are
processing bytes (e8), the pointer advance in bytes is exactly equal to the number of elements
processed (VL). The correct way to write this would be mv t1, t0. The author likely meant addi t1,
t0, 0 asa way to move the value.

e add a0, a0, t1:Advancesthe source pointer a by VL bytes.
e add al, al, tl:Advances the source pointer b by VL bytes.
e add a2, a2, tl:Advances the destination pointer c by VL bytes.

7. Loop Control

sub a3, a3, to # Decrease remaining element count by VL
bnez a3, .Lloop # if remaining != 0, loop again

.Ldone:
ret

e sub a3, a3, tO0: Subtracts the number of elements we just processed (VL, in £0) from the total
remaining count (a3).

e bnez a3, .Lloop: Checks if the remaining count is now zero. If not, it branches back to .Lloop to
process the next chunk.

¢ ret: When all elements are processed (a3==0), the function returns to the caller.

Summary and Key RVV Concepts lllustrated:

1. vsetvli is the Master Control: It dynamically determines the chunk size (VL) for each loop
iteration based on the hardware's capabilities and the amount of data left. This makes the code portable
across different RISC-V implementations with different vector register lengths (VLEN).

2. Element Agnostic: The code is written for bytes (e8), but changing just the vsetv1li instruction to
elé6, e32,or e64 would make it work for shorts, ints, or longs, respectively. The load/store
(vlie8.v/vse8.v) and sometimes the arithmetic instructions would also need their width suffix
updated.

3. True Single-Loop Structure: The loop overhead is minimal. One vsetv1li configures the hardware to
process a variable-sized chunk of data with the subsequent vector instructions.

4. Automatic Safety: The VL value ensures the load, compute, and store operations only act on valid data,
even for the last partial chunk. There is no need for complex array bounds checking inside the loop.

2.1.2 vector_int_add.c and vector_int _add rvv.s

The following example is almost the same as the previous one; the main difference is the size and type of data
elements - int32_t

1 // vector_ _int_add.c

2 #include <stdio.h>

3 #include <stdint.h>

4 #include <stddef.h>

5 #include <time.h>

6

7 // Our assembly function (from previous code)

8 extern void vector_int_add_rvv(const int32_t *a, const int32_t *b, int32_t *c, size_t n);
9

10 int main(void) {

11 clock_t startv, endv;

12 clock_t start, end;

13 double elapsed_secv;

14 double elapsed_sec;

15 const int N = 32;

16 int32_t a[N], b[N], c[N]; // 32-bit integer data

17 int steps=1000000;

18 // Initialize test vectors

19 for (int i = 0; i < N; i++) { a[i] = i; b[i] =i * 2; }
20 startv=clock();
21 // Call vector addition
22 for (int i=0;i<steps;i++) vector_int_add_rvv(a, b, c, N);
23 endv=clock() ;
24 elapsed_secv = (double) (endv - startv) / CLOCKS_PER_SEC;
25 // Print results
26 printf ("Vector addition result:\n");
27 for (int i = 0; i < N; i++)
28 printf("%d + %d = %d\n", a[i], b[i], c[il]);
29 }

30 start=clock();

31 // Call addition

32 for (int i=0;i<steps;i++) {for(int j=0; j<32;j++)c[jl=al[jl+ b[3il;}
33 end=clock() ;

34 elapsed_sec = (double) (end - start) / CLOCKS_PER_SEC;

35 // Print results

36 printf ("Addition result:\n");

37 for (int 1 = 0; i < N; i++)

38 printf("%d + %d = %d\n", a[i], b[i], c[il]);

39 }

40 printf ("Vector execution time: %.6f sec\n",elapsed_secv);
41 printf ("Scalar execution time: %.6f sec\n",elapsed_sec);
42 printf ("Speed-up: %.3f sec\n",elapsed_sec/elapsed_secv);
43 return O;

44 }

.text

.globl vector_int_add_rvv
vector_int_add_rvv:
beqz a3, .Ldone # if n == 0, return

.Lloop:
Choose VL for remaining elements, e32 lanes, LMUL=1.
TA/MA: tail-agnostic, mask-agnostic (simple and fast).

vsetvli t0, a3, e32, ml, ta, ma # t0 := VL (number of 32-bit lanes we'll process)
Load a chunk from a and b

vle32.v v0, (a0) # vO <- a[i .. i+VL-1] (32-bit integers)

vle32.v vl, (al) # vl <- b[i .. i+VL-1] (32-bit integers)

Vector add

vadd.vv v2, v0, vl # v2 <- v0 + vl (32-bit addition)
Store result to c

vse32.v v2, (a2)

Advance pointers by VL * sizeof (int32_t) = VL * 4 (bytes)

slli tl, t0, 2 # tl = VL. * 4 (bytes) - CORRECTED
add a0, a0, t1
add al, al, t1
add a2, a2, ti1
Decrease remaining element count by VL and loop
sub a3, a3, to
bnez a3, .Lloop
.Ldone:
ret

% gcc —-march=rvé4gcv vector_int_add_rvv.s vector_int_add.c -o vector_int_add
% ./vector_int_add
Vector addition result:

0+0=0
1+2=3
2+4=6
30 + 60 = 90

31 + 62 = 93
Vector execution time: 0.041034 sec
Scalar execution time: 0.697534 sec

Speed-up: 16.999

Now let us recompile the same example with -O2 option:

%$gcc —02 -march=rvé4gcv —-fopt-info-vec vector_int_add_rvv.s vector_int_add.c -o vector_int_add
vector_int_add.c:32:46: optimized: loop vectorized using 16 byte vectors
% ./vector_int_add

30 + 60 920
31 + 62 93
Vector execution time: 0.042629 sec
Scalar execution time: 0.082662 sec

Speed-up: 1.939 sec

To do:
Rewrite the same example (with main test) of vector addition using floating point data. The following is the
assembly part:

.text

.globl vector_float_add_rvv
vector_float_add_rvv:

beqz a3, .Ldone

.Lloop:
Explicit float configuration (some assemblers support this)
vsetvli t0, a3, e32, ml, ta, ma # Process single-precision floats
vle32.v v0, (a0)
vlie32.v vl, (al)
vfadd.vv v2, v0, vl # Single-precision floating-point add
vse32.v v2, (a2)
Pointer arithmetic (same as integer version)
slli tl, tO0, 2

add a0, a0, t1

add al, al, t1

add a2, a2, ti

sub a3, a3, to

bnez a3, .Lloop
.Ldone:

ret

Key RISC-V Vector Floating-Point Instructions:

vfadd. vv: Vector floating-point add (vector-vector)
vfadd.vE: Vector floating-point add (vector-scalar)
vEsub . vv: Vector floating-point subtract

vEmul . vv: Vector floating-point multiply

vEdiv. vv: Vector floating-point divide

vEimin.vv, vEfmax.vv: Vector floating-point min/max

. The element size remains e32 since single-precision floats are 32 bits

The pointer arithmetic is identical to the integer version since both int32_t and float are 4 bytes

The load/store instructions (vl1e32.v/vse32.v) are the same since they just move raw bytes; the
interpretation as floats happens in the v£add instruction

The same code structure works for double (64-bit floating-point) by changing e32 to e64 and the
pointer arithmetic to s11i t1, t0, 3 (multiply by 8 bytes)

2.2 Vector average value : reduction

The following example with the assembly code for vector operations and the main C code for scalar operations.
In assembly code notice the use of reduction instruction:

vredsum.vs v2, v2, v4 # v2[0] = sum of widened lanes

avg_i32_rvv.s
int32_t avg_i32_rvv(const int32_t *src, size_t n);
RV64 + V (RVV 1.0). Returns 0 if n ==
.text
.globl avg_i32_rvv
.type avg_i32_rvv, Q@function
avg_i32_rvv:

beqz al, .ret_zero # if (n==0) return O
mv a2, al # save original n for the final divide
1i t5, 0 # 64-bit scalar accumulator sum = 0

1: beqz al, 2f # while (remaining > 0)

Set VL for remaining elements, SEW=32, LMUL=1

vsetvli t0, al, e32, ml, ta, ma # t0 := vl

Load a chunk of int32

vlie32.v v0, (a0)

Widen to e64 (LMUL=m2) and reduce-sum to a 64-bit scalar

vsetvli x0, t0, e64, m2, ta, ma # same element count in widened type
vsext.vf2 v2, v0 # v2 (e64,m2) = sign—-extend(v0)
vmv.v.i v4, 0 # zero seed
vredsum.vs v2, v2, v4 # v2[0] = sum of widened lanes
vmv.x.s t2, v2 # t2 = chunk sum (64-bit)
add t5, t5, t2 # accumulate
Advance pointers/counters
slli tl, t0, 2 # bytes = vl * 4
add a0, a0, t1 # src += vl
sub al, al, toO # remaining -= vl
bnez al, 1b

2: # Average = sum / original_n (truncates toward zero)
mv a0, t5 # a0 = 64-bit sum
a2 holds original n (>0)
div a0, a0, a2 # signed divide, trunc toward zero
sext.w a0, a0 # return as int32_t (RV64 sign-extend)
ret

.ret_zero:
1i a0, 0
ret
.size avg_i32_rvv, .-avg_i32_rvv

4 #include <stdlib.h>
5 #include <time.h>
6
7 // Assembly function prototype
8 extern int32_t avg_i32_rvv(const int32_t *src, size_t N);
9
10 int steps=10000;
11
12 int32_t avg(const int32_t *src, int MAX)
13 {
14 int64_t sum = 0;
15 for (int i = 0; i < MAX; i++4+) sum += src[i];
16 return (int32_t) sum/MAX;
17 }
18
19 int main(void) {
20 enum { N = 1024 };
21 int32_t data[N];
22 clock_t startv, endv;
23 clock_t start, end;
24 double elapsed_secv;
25 double elapsed_sec;
26 int32_t avg_vec, avg_c;
27
28 // Fill test data with a simple pattern
29 for (int i = 0; i < N; i++) {
30 data[i] = i; // (i % 50) - 25; // values from -25 to 24
31 }
32
33 // Call the RVV assembly function
34 startv=clock();
35 for (int i=0;i<steps;i++) avg_vec = avg_i32_rvv(data, 1024);
36 endv=clock() ;
37 elapsed_secv = (double) (endv - startv) / CLOCKS_PER_SEC;
38 printf ("Vector execution time in sec: %.6f\n",elapsed_secv);
39
40 // Call the scalar function

41 start=clock();

42 for (int i=0;i<steps;i++) avg_c=avg(data,N);

43 end=clock() ;

44 elapsed_sec = (double) (end - start) / CLOCKS_PER_SEC;
45 printf ("Scalar execution time in sec: %.6f\n",elapsed_sec);
46 printf ("Speed-up: %.3f\n",elapsed_sec/elapsed_secv);
47

48 // Display results

49 printf ("Vector execution result: %d\n", avg_vec);

50 printf ("Scalar execution result: %d\n", avg_c);

51

52 // Optional: check if they match

53 if (avg_vec == avg c) {

54 printf ("Test PASSED\n");

55 return O;

56 } else {

57 printf ("Test FAILED\n");

58 return 1;

59 }

60 }

61

% gcc -march=rvé64gcv avg_i32_rvv.s average_int32.c -o average_int32
% ./average_int32

Vector execution time in sec: 0.026015

Scalar execution time in sec: 0.141505

Speed-up: 5.439

Vector execution result: 511
Scalar execution result: 511
Test PASSED

Compilation with optimization:

gcc -03 —-march=rvé64gcv —-fopt-info-vec avg_i32_rvv.s average_int32.c -o average_int32
average_int32.c:15:23: optimized: loop vectorized using variable length vectors
average_int32.c:29:23: optimized: loop vectorized using variable length vectors
orangepiQRorangepirv2:~/RV.Parallel/codes/book_lab2$./average_int32

Vector execution time in sec: 0.025848

Scalar execution time in sec: 0.011378

Speed-up: 0.440

Vector execution result: 511
Scalar execution result: 511
Test PASSED

To do:
Write the same example for byte data elements

	Lab 2: SIMD
	Vector programming and processing 1
	2.1 Adding two vectors
	2.1.1 vector_byte_add.c and vector_byte_add_rvv.s
	2.1.2 vector_int_add.c and vector_int_add_rvv.s

	2.2 Vector average value : reduction

