
Lab 1 :

Basic assembly programming for RISC-V

This lab is a mini-guide that shows how to write tiny RISC-V assembly programs, explains the key instructions,
and then assembles/runs them on a Linux-based RISC-V board (like your K1/MUSE Pi Pro with Bianbu/Debian),
or an equivalent compatible RISC-V board.

RISC-V (RV64) uses a clean register set and a simple calling convention:

 Integer argument/return registers: a0–a7 (x10–x17).

 Function args go in a0..a7, return value in a0.

 Temporary registers: t0–t6 (x5–x7, x28–x31).

 Saved registers: s0–s11 (x8–x9, x18–x27). Preserve them across calls if you use them.

 Zero register: x0 is always 0.

 Program counter jumps: jal (call), ret (return), conditional branches like beq, bne, blt.

Common instructions we can use immediately:

 addi rd, rs1, imm — add immediate

 add rd, rs1, rs2 — add registers

 li rd, imm — load small constant (assembler pseudo-op)

 la rd, symbol — load address of a label (pseudo-op)

 ld rd, offset(rs1) / sd rs2, offset(rs1) — load/store 64-bit

 mv rd, rs — move (pseudo-op)

 Branches: beq, bne, blt, bge

 Calls/returns: jal ra, func, ret

 Linux syscalls: put args in a0.., syscall number in a7, then ecall

1.1 Minimal code with exit (pure syscall, no libc)
Below we present a minimal assembly program that performs a single operation (an exit call).

The code is assembled using the as command with the debug option -g. The resulting object file is then linked
with the ld command.

Program execution is started and inspected within the debugger gdb.

Note the debugger commands:

b _start - to move (branch) the execution starting address to label _start

r - to start the execution (run)

s - to run one step – next instruction

i r - to give the information about the state of general registers
--
file: exit0.s
 .section .text
 .globl _start
_start:
 li a0, 0 # exit status = 0
 li a7, 93 # SYS_exit on RISC-V Linux
 ecall # make the syscall

% as exit0.s -g -o exit0.o
% ld exit0.o -o exit0

% gdb exit0
..
Reading symbols from exitcall...
(gdb) b _start
Breakpoint 1 at 0x100b0: file exit0.s, line 5.
(gdb) r
Starting program: /home/bako/PLabs/PLabs/book_lab0/exit0

Breakpoint 1, _start () at exit0.s:5
5 li a0, 0 # exit status = 0
(gdb) s
6 li a7, 93 # SYS_exit on RISC-V Linux
(gdb) s
7 ecall # make the syscall
(gdb) i r
ra 0x2aaaad733e 0x2aaaad733e
sp 0x3ffffff880 0x3ffffff880
gp 0x2aaab69558 0x2aaab69558
tp 0x3ff7d7eb80 0x3ff7d7eb80
t0 0xffffffffffffffff -1
t1 0x2aaaac2a8c 183252036236
t2 0xffffffffffffffff -1
fp 0x3fffff49f0 0x3fffff49f0
s1 0x3ff7fd2670 274743502448
a0 0x0 0
a1 0x3ff7fd2670 274743502448
a2 0x3ffffff8c8 274877905096
a3 0x3ff7fd2678 274743502456
a4 0x0 0
a5 0x0 0
a6 0x0 0
a7 0x5d 93
s2 0x3fffff45f0 274877859312
..
t3 0x3ff7e1e530 274741716272
t4 0x62616c5f6b6f6f62 7089066445538029410
t5 0x30746978652f30 13638795222396720
t6 0x2aaab727fc 183252756476
pc 0x100b8 0x100b8 <_start+8>

To do
Analyze the above program and the debugger output: a0, a7, pc .

1.2 Add two integers and print the result (uses printf from libc)
In this example we define main, pass arguments in a0.., call printf, then return.
--
file: add_printf.s
 .section .rodata
fmt: .asciz "a + b = %ld\n"

 .section .text
 .globl _start
_start:
 li a0, 7 # a = 7
 li a1, 5 # b = 5
 add a2, a0, a1 # a2 = a + b
 # Set up printf(fmt, a2)
 la a0, fmt # a0 = &fmt (1st arg)
 mv a1, a2 # a1 = sum (2nd arg)
 call printf # jal ra, printf
 li a0, 0 # return 0 from main
 ret
--

Key ideas: note the use of gcc compiler – necessary to import libc

 With libc, define _start.

 First two args to printf go in a0, a1.

 call printf is a convenient alias for jal ra, printf.
--
gcc -nostartfiles add_printf.s -o add_printf
% ./add_printf
a + b = 12

1.3 Sum an array in a loop and print the sum
This shows simple pointer arithmetic, loads, branches, and a loop counter.

file: sum_array.s
 .section .rodata
arr: .quad 10, 20, 30, 40, 50 # 5 elements (64-bit each)
nval: .quad 5
fmt2: .asciz "sum = %ld\n"

 .section .text
 .globl _start
_start:
 # a0 = base pointer to arr
 la a0, arr
 # a1 = number of elements (n)
 la t0, nval
 ld a1, 0(t0)
 # a2 = running sum, a3 = loop index i
 li a2, 0
 li a3, 0
loop:
 bge a3, a1, done # if (i >= n) break
 slli t1, a3, 3 # t1 = i * 8 (bytes per 64-bit)
 add t2, a0, t1 # t2 = &arr[i]
 ld t3, 0(t2) # t3 = arr[i]
 add a2, a2, t3 # sum += arr[i]
 addi a3, a3, 1 # i++
 j loop
done:
 # printf("sum = %ld\n", a2)
 la a0, fmt2
 mv a1, a2
 call printf
 li a0, 0
 ret
--
% gcc -nostartfiles sum_array.s -o sum_array
% ./sum_array
sum = 150

1.4 Big example - 3×3 Matrix Multiply (C=A×B), 64-bit integers

In this example we introduce:

 Nested loops with bge, addi, slli (indexing).

 Proper use of saved registers (s0–s2) and a stack frame: sp (6*8=48 bytes).

 Pointer arithmetic and ld/sd.

 Calling printf with RV64 ABI.
--
 .section .rodata
fmt_row: .asciz "%4ld %4ld %4ld\n"

A:
 .quad 1, 2, 3
 .quad 4, 5, 6
 .quad 7, 8, 9
B:
 .quad 9, 8, 7
 .quad 6, 5, 4
 .quad 3, 2, 1
 .section .bss
 .align 3 # 8-byte align
C:
 .skip 8*9 # space for 3x3 int64 result
 .section .text
 .globl _start
_start:
 # Prologue: save ra, s0–s4. Keep stack 8-byte aligned (48 bytes total).
 addi sp, sp, -48
 sd ra, 40(sp)
 sd s0, 32(sp)
 sd s1, 24(sp)
 sd s2, 16(sp)
 sd s3, 8(sp)
 sd s4, 0(sp)
 # Base pointers in callee-saved regs
 la s0, A
 la s1, B
 la s2, C
 li s3, 3 # N = 3 (matrix dimension), callee-saved
 # ---- Compute C = A * B (scalar) ----
 li t0, 0 # i
outer_i:
 bge t0, s3, done_compute
 li t1, 0 # j
outer_j:
 bge t1, s3, next_i
 li t2, 0 # sum
 li t3, 0 # k

inner_k:
 bge t3, s3, store_C
 # A[i][k]
 mul t5, t0, s3 # t5 = i*3
 add t5, t5, t3 # t5 = i*3 + k
 slli t5, t5, 3 # *8 bytes
 add t6, s0, t5
 ld t4, 0(t6) # t4 = A[i][k]
 # B[k][j]
 mul t5, t3, s3 # t5 = k*3
 add t5, t5, t1 # t5 = k*3 + j
 slli t5, t5, 3

 add t6, s1, t5
 ld t5, 0(t6) # t5 = B[k][j]
 mul t4, t4, t5 # t4 = A[i][k]*B[k][j]
 add t2, t2, t4 # sum += t4
 addi t3, t3, 1
 j inner_k

store_C:
 # C[i][j] = sum
 mul t5, t0, s3
 add t5, t5, t1
 slli t5, t5, 3
 add t6, s2, t5
 sd t2, 0(t6)
 addi t1, t1, 1
 j outer_j

next_i:
 addi t0, t0, 1
 j outer_i

done_compute:
 # ---- Print C row by row ----
 li s4, 0 # row counter in callee-saved reg
print_rows:
 bge s4, s3, finish
 mul t5, s4, s3
 slli t5, t5, 3 # byte offset = (row*3)*8
 add t6, s2, t5
 ld a1, 0(t6)
 ld a2, 8(t6)
 ld a3, 16(t6)
 la a0, fmt_row
 call printf # uses caller-saved regs only; s3/s4 preserved
 addi s4, s4, 1
 j print_rows

finish:
 li a0, 0
 call exit # exit(0) — end cleanly regardless of ra
 # (No fallthrough; exit() does not return)
 # Epilogue, in case exit() were replaced with 'ret'
 ld ra, 40(sp)
 ld s0, 32(sp)
 ld s1, 24(sp)
 ld s2, 16(sp)
 ld s3, 8(sp)
 ld s4, 0(sp)
 addi sp, sp, 48
 ret

% gcc -nostartfiles matmult3x3.s -o matmult3x3
% ./matmult3x3
 30 24 18
 84 69 54
 138 114 90

To do - study in details
Goal: Compute C=A×B for two 3×3 int64 matrices and print the result (three rows).

Register usage map (at a glance)

Callee-saved (survive printf)

 s0 – base address of A

 s1 – base address of B

 s2 – base address of C

 s3 – constant N = 3 (matrix dimension)

 s4 – row counter for the print loop

Temporaries (caller-saved; used inside compute loops only)

 t0 – loop i (rows of A/C)

 t1 – loop j (cols of B/C)

 t2 – sum accumulator for C[i][j]

 t3 – loop k (inner product index)

 t4 – scratch for loaded value/product

 t5 – scratch for indices/offsets

 t6 – scratch pointer (effective address)

Call/return & args

 ra – return address (saved/restored)

 a0–a3 – printf args when printing a row

Data layout & addressing

 Row-major matrices (int64): element size = 8 bytes.

 Index → byte offset:

 idx = row * N + col

 offset = idx << 3 (shift-left by 3 = ×8)

Examples used in the code:
 A[i][k]

offset = ((i*N) + k) << 3

 B[k][j]
offset = ((k*N) + j) << 3

 C[i][j]

same formula

Loop structure (pseudocode):
for (i = 0; i < 3; ++i) {
 for (j = 0; j < 3; ++j) {
 sum = 0;
 for (k = 0; k < 3; ++k) {
 sum += A[i][k] * B[k][j];
 }
 C[i][j] = sum;
 }
}
// print C, one row at a time
for (row = 0; row < 3; ++row) {
 printf("%4ld %4ld %4ld\n", C[row][0], C[row][1], C[row][2]);
}
--

Assembly mapping:

 Outer loops: i → t0, j → t1, inner k → t3

 Bound checks use bge <counter>, s3, <exit_label>

 Offsets built with mul by s3 then slli by 3 (?)



Key instruction patterns (with intent)

 Prologue/Epilogue

 Keep stack 16-byte aligned across calls; save/restore ra and all s* used.

addi sp, sp, -48 # multiple of 16
sd ra, 40(sp) # ... save s0–s4 ...
...
ld ra, 40(sp)
addi sp, sp, 48

ret

Loop compare against constant N (in callee-saved s3)

bge t0, s3, done_compute

Row-major element address

mul t5, t0, s3 # row * N
add t5, t5, t3 # + k (or + j)
slli t5, t5, 3 # * 8 bytes
add t6, s0, t5 # base + offset

Inner product

ld t4, 0(t6) # load A[i][k] or B[k][j]
mul t4, t4, t5 # product
add t2, t2, t4 # accumulate sum

Print row (safe across printf)

ld a1, 0(t6) # C[row][0]
ld a2, 8(t6) # C[row][1]
ld a3, 16(t6) # C[row][2]
la a0, fmt_row
call printf # s3/s4 preserved

	Lab 1 :
	Basic assembly programming for RISC-V
	1.1 Minimal code with exit (pure syscall, no libc)
	1.2 Add two integers and print the result (uses printf from libc)
	1.3 Sum an array in a loop and print the sum
	1.4 Big example - 3×3 Matrix Multiply (C=A×B), 64-bit integers
	To do - study in details

