Lab 1:
Basic assembly programming for RISC-V

This lab is a mini-guide that shows how to write tiny RISC-V assembly programs, explains the key instructions,
and then assembles/runs them on a Linux-based RISC-V board (like your K1/MUSE Pi Pro with Bianbu/Debian),
or an equivalent compatible RISC-V board.

RISC-V (RV64) uses a clean register set and a simple calling convention:

¢ Integer argument/return registers: a0-a7 (x10-x17).
¢ Function args goin a0. .a7, return value in a0.
e Temporary registers: t0-t6 (x5-x7, x28-x31).
e Saved registers: s0-s11 (x8-x9, x18-x27).Preserve them across calls if you use them.
e Zero register: x0 is always 0.
¢ Program counter jumps: jal (call), ret (return), conditional branches like beq, bne, blt.

Common instructions we can use immediately:

e addi rd, rsl, imm — add immediate

e add rd, rsl, rs2 — addregisters

e 1i rd, imm — load small constant (assembler pseudo-op)

e la rd, symbol — load address of a label (pseudo-op)

e 1d rd, offset(rsl) / sd rs2, offset (rsl) — load/store 64-bit
e mv rd, rs — move (pseudo-op)

e Branches:beq, bne, blt, bge

e Calls/returns: jal ra, func, ret

e Linux syscalls: put args in a0. ., syscall number in a7, then ecall

1.1 Minimal code with exit (pure syscall, no 1ibc)

Below we present a minimal assembly program that performs a single operation (an exit call).

The code is assembled using the as command with the debug option —g. The resulting object file is then linked
with the 1d command.

Program execution is started and inspected within the debugger gdb.
Note the debugger commands:

b _start - to move (branch) the execution starting address to label _start
r - to start the execution (run)
s - to run one step - next instruction
ir - to give the information about the state of general registers
file: exitO.s
.section .text
.globl _start
_start:
1i a0, 0 # exit status = 0
1i a7, 93 # SYS_exit on RISC-V Linux
ecall # make the syscall
% as exit0.s —-g —-o exit0.o
% 1d exit0.0 —-o exit0

% gdb exitO0
Reading symbols from exitcall...
(gdb) b _start
Breakpoint 1 at
(gdb) r
Starting program: /home/bako/PLabs/PLabs/book_lab0/exit0

0x100b0: file exit0O.s, line 5.

Breakpoint 1, _start () at exit0.s:5

5 1i a0, 0 # exit status = 0
(gdb) s

6 1i a7, 93 # SYS_exit on RISC-V Linux
(gdb) s

7 ecall # make the syscall
(gdb) i r

ra Ox2aaaad733e 0x2aaaad733e

sp Ox3f£f£f£££880 Ox3ff£f£f£f£880

ap 0x2aaab69558 0x2aaab69558

tp 0x3£f£f7d7eb80 0x3f£f7d7eb80

t0 OxffffffffffEfEEEEf -1

tl Ox2aaaac2a8c 183252036236

t2 OxfffffffffEfEEEEEE -1

fp Ox3f£f£££49£0 Ox3f££f£f£f49f0

sl 0x3£f£7£d2670 274743502448

a0 0x0 0

al Ox3f£f7£d2670 274743502448

a2 Ox3ffff£ff8c8 274877905096

a3 0x3f£f7£fd2678 274743502456

a4 0x0 0

a5 0x0 0

a6 0x0 0

a7 0x5d 93

s2 Ox3ff£f££45f0 274877859312

t3 0x3ff7ele530 274741716272

t4 0x62616c5£f6b6£f6£62 7089066445538029410
t5 0x30746978652£30 13638795222396720
t6 Ox2aaab727fc 183252756476

pc 0x100b8 0x100b8 <_start+8>
To do

Analyze the above program and the debugger output: a0, a7, pc.

1.2 Add two integers and print the result (uses printf from 1ibc)
In this example we define main, pass arguments in a0. ., call print £, then return.

file: add_printf.s
.section .rodata
fmt: .asciz "a + b = %1d\n"

.section .text
.globl _start

_start:
1i a0, 7 #a=7
1i al, 5 #b=25
add a2, a0, al # a2 =a +b

Set up printf (fmt, a2)

la a0, fmt # a0 = &fmt (1lst argqg)
mv al, a2 # al = sum (2nd argqg)
call printf # jal ra, printf

1i a0, 0 # return 0 from main

ret

Key ideas: note the use of gcc compiler - necessary to import 1ibc
e With 1ibc, define _start.
e Firsttwo args to print£f goin a0, al.
e call printfisaconvenient alias for jal ra, printf.

gcc —nostartfiles add_printf.s —-o add_printf
% ./add_printf
a+b-=12

1.3 Sum an array in a loop and print the sum
This shows simple pointer arithmetic, loads, branches, and a loop counter.

file: sum_array.s
.section .rodata

arr: .quad 10, 20, 30, 40, 50 # 5 elements (64-bit each)
nval: .quad 5
fmt2: .asciz "sum = %1d\n"

.section .text
.globl _start
_start:
a0 = base pointer to arr
la a0, arr
al = number of elements (n)
la t0, nval
1d al, 0(tO0)

a2 = running sum, a3 = loop index i
1i a2, 0
1li a3, 0
loop:
bge a3, al, done # if (i >= n) break
slli t1, a3, 3 # tl =1 * 8 (bytes per 64-bit)
add t2, a0, t1l # t2 = garr[i]
1d t3, 0(t2) # t3 = arr[i]
add a2, a2, t3 # sum += arr[i]
addi a3, a3, 1 # i++

Jj loop
done:
printf("sum = %1d\n", a2)
la a0, fmt2
mv al, a2
call printf
1i a0, 0
ret

% gcc —nostartfiles sum_array.s —-o sum_array
% ./sum_array
sum = 150

1.4 Big example - 3x3 Matrix Multiply (C=AxB), 64-bit integers

A B C

123 9 87 30 24 18
456 X |6 54| =|846954
789 3 21 138 11490

In this example we introduce:
¢ Nested loops withbge, addi, sl1li (indexing).
¢ Proper use of saved registers (s0-s2) and a stack frame: sp (6*8=48 bytes).
e Pointer arithmetic and 1d/sd.
e (Calling print £ withRv64 ABI.

.section .rodata
fmt_row: .asciz "%41d %41d %41d\n"

A:
.quad 1, 2
.quad 4, 5
.quad 7, 8

oo w

.quad 9, 8,
.quad 6, 5,
.quad 3, 2,
.section .bs
.align 3 # 8-byte align

[N i N |

.skip 8*9 # space for 3x3 int64 result
.section .text
.globl _start
_start:
Prologue: save ra, s0-s4. Keep stack 8-byte aligned (48 bytes total).
addi sp, sp, -48
sd ra, 40(sp)
sd s0, 32 (sp)
sd sl, 24 (sp)
sd s2, 16(sp)
sd s3, 8(sp)
sd s4, O0(sp)
Base pointers in callee-saved regs

la sO, A
la sl, B
la s2, C
1i s3, 3 # N = 3 (matrix dimension), callee-saved
———— Compute C = A * B (scalar) ————
1i t0, O # i

outer_i:
bge t0, s3, done_compute
1i tl, O # 3

outer_j:
bge tl1, s3, next_i
1i t2, 0 # sum
1i t3, O # k

inner_k:
bge t3, s3, store_C
A[i] [k]
mul +t5, t0, s3 # t5 = i*3
add t5, t5, t3 # t5 = i*3 + k
slli t5, t5, 3 # *8 bytes
add t6, sO0, t5
1d t4, 0(t6) # t4 = A[i] [k]
Blk][]]
mul +t5, t3, s3 # t5 = k*3
add t5, t5, t1 # t5 = k*3 + j

slli t5, t5, 3

add t6, sl1l, t5

1d t5, 0(t6) # t5 = B[k]I[]]
mul t4, t4, t5 # t4 = A[i] [k]*B[k][]]
add t2, t2, t4 # sum += t4
addi t3, t3, 1
Jj inner_k
store_C:

C[i][]j] = sum
mul t5, t0, s3
add t5, t5, t1
s1lli t5, t5, 3
add t6, s2, t5
sd t2, 0(t6)
addi t1, t1, 1

j outer_j
next_i:

addi tO0, tO0, 1

Jj outer_i

done_compute:

———— Print C row by row —-——-

1i s4, O # row counter in callee-saved reg
print_rows:

bge s4, s3, finish

mul t5, s4, s3

slli t5, t5, 3 # byte offset = (row*3)*8

add t6, s2, t5

1d al, 0(té)

1d a2, 8(te6)

1d a3, 16(te6)

la a0, fmt_row

call printf # uses caller-saved regs only; s3/s4 preserved

addi s4, s4, 1

Jj print_rows

finish:
1i a0, 0
call exit # exit (0) — end cleanly regardless of ra
(No fallthrough; exit () does not return)
Epilogue, in case exit () were replaced with 'ret'
1d ra, 40(sp)
1d s0, 32 (sp)
1d sl, 24 (sp)
1d s2, 16(sp)
1d s3, 8(sp)
1d s4, O (sp)
addi sp, sp, 48
ret

% gcc —nostartfiles matmult3x3.s -—-o matmult3x3
% ./matmult3x3

30 24 18

84 69 54

138 114 20

To do - study in details
Goal: Compute C=AxB for two 3x3 int 64 matrices and print the result (three rows).
Register usage map (at a glance)

Callee-saved (survive print£)
e s0 -base address of A
e sl -base address of B
* s2-base address of C
e s3 - constant N = 3 (matrix dimension)
e s4 - row counter for the print loop

Temporaries (caller-saved; used inside compute loops only)
e tO0-loop i (rows of A/C)
e tl-loop j (colsof B/C)
e t2 - sumaccumulator for c[i] [j]
e 3 -loop k (inner product index)
e t4 - scratch for loaded value/product
e t5 - scratch for indices/offsets
e t6 - scratch pointer (effective address)
Call/return & args
e ra - return address (saved/restored)
¢ a0-a3 - printf args when printing a row
Data layout & addressing
¢ Row-major matrices (int64): element size = 8 bytes.
¢ Index - byte offset:
¢ idx = row * N + col
e offset = idx << 3 (shift-left by 3 = x8)
Examples used in the code:

e A[i][k]

offset = ((i*N) + k) << 3
e B[k]I[]]

offset = ((k*N) + j) << 3
e C[ilI[3]

same formula

Loop structure (pseudocode):

for (i = 0; i < 3; ++i) {
for (J = 0; j < 3; ++3j) {
sum = 0;
for (k = 0; k < 3; ++k) {
sum += A[i] [k] * B[k][]];

}
Cl[il[3] = sum;
}
}
// print C, one row at a time
for (row = 0; row < 3; ++row) {
printf ("%41d %41d %41d\n", Cl[row] [0], C[row][1l], C[row][2]);
}

Assembly mapping:
e CQuterloops: i » t0,3j - tl,innerk - t3
e Bound checks use bge <counter>, s3, <exit_label>
e Offsets built with mul by s3 then s11i by 3 (?)
o
Key instruction patterns (with intent)
¢ Prologue/Epilogue
¢ Keep stack 16-byte aligned across calls; save/restore ra and all s* used.

addi sp, sp, -48 # multiple of 16
sd ra, 40 (sp) # ... save s0-s4

ia. ra, 40(sp)
addi sp, sp, 48

ret

Loop compare against constant N (in callee-saved s3)

bge t0, s3, done_compute

Row-major element address

mul t5, t0, s3 #
add t5, t5, t3 #
slli t5, t5, 3 #
add t6, s0, t5 #
Inner product

1d t4, 0(té) #
mul t4, t4, t5 #
add t2, t2, t4 #

Print row (safe across print£)

1d al, 0(té6)
1d a2, 8(te)
1d a3, 16(te6)
la a0, fmt_row
call printf

H I

row * N

+ k (or + j)
* 8 bytes
base + offset

load A[i] [k] or B[k][]]
product
accumulate sum

Cl[row] [0]
Clrow] [1]
Clrow] [2]

s3/s4 preserved

	Lab 1 :
	Basic assembly programming for RISC-V
	1.1 Minimal code with exit (pure syscall, no libc)
	1.2 Add two integers and print the result (uses printf from libc)
	1.3 Sum an array in a loop and print the sum
	1.4 Big example - 3×3 Matrix Multiply (C=A×B), 64-bit integers
	To do - study in details

