Lab 0

0.1 Introduction
0.1.1 Why parallel processing ?

The main aim of the development and implementation of computer architecture is the increase of
processing speed. The simplest way seems to just increase clock frequency.

Effectively, in the 1990s-early 2000s, performance improvements came mainly from cranking up
clock speeds (e.g. Pentium 4 up to ~3.8 GHz).

When engineers tried to keep improving processors simply by raising clock speed, they ran into
several hard limits. Increasing the operating frequency or voltage makes power consumption rise
dramatically, because dynamic power scales with both frequency and the square of voltage.

power = C x V2 x f

As a result, chips running above about 4-5 GHz on conventional silicon generate so much heat that
they become impossible to cool with standard methods. At the same time, advances in manufacturing
that shrank transistors to smaller process nodes introduced a new challenge often called the “energy
wall.”

Leakage currents, small but constant flows of electricity even when a transistor is supposed to be off,
became significant, and running at higher speeds meant wasting far more energy per instruction.
Another limitation comes from signal propagation delay. Within a chip, every signal must travel from
one part of the die to another within a single clock cycle. While transistors scale down well, long
interconnect wires do not, so simply pushing the clock higher means signals can no longer reach their
destination in time.

Finally, there are diminishing returns from deep pipelines. Designers extended pipelines to achieve
higher frequencies, as Intel famously did with the Pentium 4’s 31 stages.

But this strategy backfired: a mispredicted branch meant discarding dozens of in-flight stages, leading
to poor real-world performance per clock even if the advertised frequency was high.

Together, these barriers explain why raw clock speed stopped being the main route to faster
processors and why architects turned to multicore (MIMD) and vector parallelism (SIMD) instead.

0.1.2 Why RISC architectures are good for parallel processing ?

RISC (Reduced Instruction Set Computer) designs were originally created with simplicity, efficiency,
and regularity in mind and they are well suited to multicore and vector-oriented designs.

They rely on a small, regular set of instructions, which reduces the complexity of decode logic,
minimizes irregular corner cases, and keeps pipelines clean, an essential feature when the same core
design is replicated many times across a chip.

Their uniform instruction format and load/store architecture also make it easier to build efficient

pipelines and parallelize execution, ensuring that multiple cores can run with predictable behavior
without wasting power on unnecessary complexity.

Parallel Programming and Processing on RISC-V 1

The straightforward design of RISC instructions, with fixed lengths and simple semantics, further
makes it easy to integrate SIMD and vector extensions: operations that apply the same action to many
pieces of data can be added naturally, without conflicting with a bulky legacy instruction set.

Finally, RISC architectures tend to deliver better energy efficiency, achieving higher performance per
watt than more complex CISC counterparts (eg. x86 - Intel, AMD). This efficiency is critical in
multicore systems, since it allows designers to fit more cores within a given power budget while
maintaining strong overall performance.

0.1.3 Why RISC-V in particular is attractive ?

RISC-V builds on the RISC philosophy with a clean, minimal base instruction set of only around
fifty instructions, while additional features such as integer multiplication, atomics, floating-
point arithmetic, bit manipulation, or the powerful vector extension (RVV) are provided as
modular add-ons.

This modularity makes it easy to tailor a chip to its purpose: one design may be a tiny embedded
controller, while another can be a high-performance processor with wide vector capabilities.

The RVV extension itself was designed from scratch for scalability. Unlike traditional fixed-width
SIMD models such as Intel’s SSE (128 bits) or AVX (256 bits), RVV is length-agnostic, meaning that
the same program can run efficiently whether the hardware vector registers are 128, 256, or even
1024 bits wide. This flexibility is particularly valuable for systems-on-chip (SoCs) targeting different
performance and power envelopes.

Because the instruction set is simple and modular, cores are smaller and consume less power, which
allows designers to integrate many of them on a single die, from tiny microcontrollers to large-scale
server processors with dozens of cores.

Another major advantage is that RISC-V comes without the legacy baggage of architectures like
x86 or even ARM. It was created recently with modern parallelism in mind, so it avoids having to
preserve outdated quirks purely for backward compatibility.

Finally, as an open standard with no licensing restrictions, RISC-V fosters a vibrant ecosystem
where anyone can build cores, design accelerators, or experiment with custom extensions. This
openness encourages innovation in areas such as vector processing, Al acceleration, and
massively multicore systems, all without the legal or financial barriers of proprietary ISAs.

Parallel Programming and Processing on RISC-V 2

0.2 SIMD versus MIMD

There are two major modes of parallel processing commonly discussed in computer architecture:
SIMD and MIMD.

SIMD, or Single Instruction, Multiple Data, refers to the execution model where one instruction
operates on many data elements at the same time.

This approach is particularly effective for vectorized workloads such as graphics rendering, image
and audio processing, or scientific calculations where the same operation must be applied repeatedly
across large datasets.

Well-known examples include ARM’s NEON instruction set and the RISC-V Vector extension, both
of which allow a single instruction to handle multiple data items simultaneously.

MIMD, or Multiple Instruction, Multiple Data, takes a different approach. In this model, multiple
instructions are executed in parallel, each working on its own set of data. Every core or thread can
follow its own control flow independently of the others, which makes MIMD ideal for general-purpose
multicore CPUs or GPU threads that may be running different kernels.

The following figure illustrates the information flows in these four types of processing architectures.
Note that the last architecture type refers to multi-core CPUs that also include integrated vector
instructions.

instruction data-in

flow flow
SISD : : SIMD ! L L
[] [] 1 1 1 1 1
I __f':é D | % D D/D| D
.
data-out
flow I I I |
MIMD » ' ' ' ' ' ' '
_Eé D | _Eé D | _Eé D | _Eé D
| | | |
MIMD*MD
[TED/D|DID|[iED!D|D|D| (i ED|DD/D] i ED|D|D|D

Fig 0.1 instruction flow(s) and data flow(s) in SISD, SIMD, MIMD , and MIMD*MD processing

architectures
Let us explain in more details these architectures and operational modes.

Parallel Programming and Processing on RISC-V 3

0.2.1 SIMD operational mode

In the SIMD operational mode, a single control unit issues one instruction, and that instruction is
broadcast to multiple processing elements (PEs). Each PE then executes the very same
operation, but on its own individual data element. The data to be processed is usually drawn from
wide vector registers or from memory blocks that are accessed in parallel, ensuring that multiple
data items can be operated on simultaneously.

A simple example is the addition of two arrays: instead of performing one addition after another in
sequence, each PE adds a different pair of elements at the same time under a single “add” instruction
type vadd, thereby accelerating the computation dramatically.

To make this possible, several essential hardware components are required. At the center is the
Control Unit (CU), which maintains a single control flow that is shared across all the PEs. Feeding the
data to these PEs are Vector Registers or Lanes, which are wide registers (commonly 128, 256, or
512 bits, and in RISC-V even scalable up to 1024 bits or more) that can hold multiple elements side by
side.

Each lane of the vector register connects to its own Arithmetic Logic Unit (ALU), so that every
lane can perform the same operation on its respective portion of data simultaneously. Supporting this
setup are Interconnects and Data Paths, which deliver the same instruction stream but distribute
different data elements to each ALU lane.

Finally, modern SIMD designs also include Masking and Predication mechanisms, which allow
certain lanes to be enabled or disabled dynamically. This means that even under a uniform instruction,
not every element needs to be processed, an important feature for handling edge cases, conditional
operations, or irregular data sizes.

Altogether, SIMD combines one control flow with many parallel data paths, making it an efficient
hardware model for vectorized computation such as multimedia, graphics, scientific workloads, and
modern Al processing.

0.2.2 MIMD operational mode

In the MIMD operational mode, each processor core or thread operates independently, fetching
and executing its own instruction stream. Unlike SIMD, where all units follow a single control flow, in
MIMD each core has its own control logic and can work on a separate data set without being tied
to what the other cores are doing.

This independence allows the system to run different programs at the same time or to divide a large
application into distinct tasks that are processed concurrently, a principle known as task-level
parallelism.

For example, in a modern game engine one core might handle rendering graphics, another core
might process artificial intelligence logic, and a third core could simulate physics , all progressing
simultaneously. Importantly, this does not exclude cooperation between cores: they can still process
shared data structures such as large matrices, but they do so while running independent instruction
streams.

To support this level of autonomy, MIMD architectures require a number of essential hardware

components. Each core contains its own control unit responsible for fetching and decoding
instructions, as well as its own register set for holding intermediate values.

Parallel Programming and Processing on RISC-V 4

Every core is also equipped with one or more ALUs or FPUs, giving it an independent execution
pipeline. Around these pipelines sits a cache hierarchy, typically with private L1 and L2 caches for
each core and often a larger shared L3 cache to allow communication and reduce memory
latency.

The cores are tied together by an interconnect and memory system, which may rely on cache-
coherence protocols or message-passing mechanisms to keep data consistent and enable
collaboration. At a higher level, schedulers and operating system support are necessary to assign
programs and threads to the available cores and manage their execution efficiently.

The hardware philosophy behind MIMD differs fundamentally from that of SIMD. In SIMD, the design
replicates many execution units but keeps a single shared control unit, gaining efficiency from applying
the same operation to multiple data elements. In MIMD, by contrast, the design replicates whole
processors, including control units, registers, and pipelines , which provides far greater flexibility.

This flexibility allows the system to exploit task-level parallelism, running different instructions on
different data simultaneously, making MIMD ideal for general-purpose multicore CPUs and
heterogeneous systems.

0.2.3 Lanes and Threads

The concepts of lanes in SIMD and threads in MIMD provide a useful way to understand how these
two architectures organize their parallel work. In SIMD, computation is carried out through /anes,
which are slices of a wide vector unit.

For example, a 256-bit RISC-V vector register operating on 32-bit integers can be thought of
as eight lanes, each lane responsible for one element of the vector. All lanes are driven by a single
instruction stream under the control of one central unit, meaning they execute in lockstep: when the
instruction vadd is issued, every lane performs an addition at the same time.

Each lane processes a different data element, so lane 0 might handle element[0], lane 1 element[1],
and so on.

Because the control is unified, lanes cannot branch off independently. If a subset of elements should
not participate in a given operation, masking or predication is used to selectively disable them while
the rest continue.

Lanes are considered lightweight execution units: they are not full processors but rather duplicated
slices of arithmetic logic that share the same register file and control infrastructure, allowing efficient
parallelism across large blocks of data.

In contrast, threads in a MIMD system represent independent flows of execution with their own control,
registers, and execution pipelines. Where SIMD lanes excel at data-level parallelism, threads enable
task-level parallelism. Together, the distinction between SIMD lanes and MIMD threads highlights
the different philosophies of parallel computing: tightly coupled lockstep execution versus independent,
concurrent instruction streams.

The following figure illustrates the lane organization of 256-bit vector registers for different element
sizes. Depending on the chosen data width (e.g., 8-bit, 16-bit, 32-bit, or 64-bit), the 256-bit vector is
partitioned into a corresponding number of lanes. Each lane is processed independently and in parallel
by a dedicated arithmetic logic unit (ALU) within the vector processing unit.

Parallel Programming and Processing on RISC-V 5

lane[0] lane[31]

e8

e16

e32

eb4

lane[0] lane[1] lane[2] lane[3]

Fig 0.2 RISC-V vector register formats (256-bit) and SIMD processing lanes depending on element
Size

The following figure illustrates the organization of multi-threaded processing. Each thread is executed
independently, using its own control unit to decode instructions and generate the corresponding control
signals. A thread operates on its own program counter, register file and maintains a private stack
and heap memory space, supported by a local L1 cache. Threads may share higher-level caches,
such as the L2 cache.

instructions

stack/heap

registers

thread

Fig 0.3 MIMD processing context (multi-core) with registers, stack/heap for independent threads

Parallel Programming and Processing on RISC-V 6

0.3 Data caches and parallel processing performance

Modern processors rely heavily on caches because of the fundamental memory gap problem.

While processor clock cycles operate at nanosecond speeds, accessing main DRAM can take
hundreds of cycles. If the CPU had to wait for every instruction or piece of data to arrive directly from
memory, it would spend most of its time idle, with execution units underutilized.

To overcome this gap, designers introduced caches, which serve as small but extremely fast
storage layers positioned close to the processor.

Fast: 2-4 Slow: 100-200
clock cycles clock cycles

E— Cache . Main

G Memo Memo
R Y e— "y
word block
transfer transfer

Fig 0.4 Acces time to cache versus main (RAM) memory

The effectiveness of caches comes from the principle of locality of reference. Programs generally
reuse the same instructions and data repeatedly, known as temporal locality, and also tend to
access memory locations that are physically close to one another, known as spatial locality.

Caches exploit both patterns by holding recently used blocks of instructions and data, so that
when the CPU requests them again, they can be supplied almost instantly without a long trip to main
memory. To handle these two types of reuse effectively, modern CPUs employ separate caches for
instructions and data.

The instruction cache (I-cache) keeps recently fetched instructions, allowing the pipeline and
branch predictor to operate smoothly without stalling for memory.

The data cache (D-cache) stores recently accessed operands so that load and store operations can
complete quickly, keeping arithmetic units continuously busy.

Together, these caches form the essential bridge between the extremely fast cores and the much
slower main memory, reducing latency, keeping pipelines filled, and ultimately making high-
performance processing feasible.

0.3.1 How data caches affect SIMD (vector processing)

SIMD lanes are designed to execute the same instruction on multiple data items simultaneously, but
this parallelism only delivers its full benefit if wide vectors can be kept constantly supplied with data.
Caches play a crucial role in making this possible. When data arrays fit within the cache and are
accessed sequentially, SIMD reaches very high throughput, since each cache line brings in several
elements at once and every lane of the vector unit can remain active.

The situation changes when the dataset is larger than the available cache. In that case, cache
misses occur more frequently, forcing the processor to fetch data from main memory.

Because all SIMD lanes depend on this shared flow of data, a single miss can stall the entire vector
unit, leaving all lanes idle while waiting for DRAM.

Parallel Programming and Processing on RISC-V 7

As a result, SIMD performance is highly sensitive to both cache size and memory bandwidth.
When the working set does not fit into cache, the advantages of vectorization diminish sharply, as
wide parallel hardware sits unused during memory stalls.

0.3.2 How data caches affect MIMD (multicore processing)

MIMD systems achieve parallelism by replicating entire processor cores, each with its own
independent instruction stream. To support this independence, every core is typically equipped with its
own private caches, such as L1 and L2 instruction and data caches, which allow it to fetch and
store frequently used information without interfering with other cores.

Beyond these private layers, the cores eventually converge on shared resources, such as an L3
cache and the main memory system.

Caches are highly beneficial in this setup: when each thread’s working set fits within its private
caches, the cores can operate largely in isolation, with little need for external communication or
memory access. Under these conditions, parallel efficiency is high. However, as the number of active
cores increases or as individual workloads expand beyond the size of their caches, problems
emerge.

Capacity pressure arises when data for a thread no longer fits in its private caches, forcing frequent
fetches from shared memory. At the same time, bandwidth contention develops as multiple cores
try to access the shared cache or memory bus simultaneously, leading to stalls.

If threads also share data, the system must maintain consistency through a cache coherence
protocol, which invalidates and updates cache lines across cores. This constant synchronization
introduces further overhead and reduces effective performance.

The overall result is that MIMD efficiency declines gradually as more cores oversubscribe the cache
and memory hierarchy.

Unlike SIMD systems, where a single cache miss can stall every lane simultaneously, in MIMD
some cores may continue to make progress while others are delayed. Nevertheless, the system
as a whole slows down due to contention, bandwidth saturation, and coherence traffic in the shared
memory system.

Parallel Programming and Processing on RISC-V 8

0.4 Amdahl’s Law

In parallel processing, execution speedup is a measure of performance improvement obtained when
a program is executed on multiple processing units (e.g., vector units or multiple cores) compared to
execution on a single processing unit. It is formally defined as:

where: T
* T1is the execution time using a single processing unit p

(scalar or single-core execution),
» Tp is the execution time using p processing units (e.g., cores or vector lanes).

A speedup value S>1 indicates a performance gain due to parallelization. Ideally, one might expect
linear speedup, where S=p.

However, in practice, speedup is often sub-linear due to sequential portions of code, synchronization
overheads, and hardware limitations.

This limitation is captured by Amdahl’s Law, which expresses the theoretical maximum speedup
achievable by parallelization. If a fraction a of a program is inherently sequential and cannot be
parallelized, while the remaining fraction (1-f) can be executed in parallel, then the maximum speedup
on N processors is:

S(N) =

Key implications:
+ If /0, the speedup is bounded, no matter how many processors are added.
» The larger the parallelizable portion (1-1), the closer the speedup approaches the ideal linear
case.
* Amdahl’s Law highlights the importance of minimizing the sequential fraction of a program to
achieve significant performance gains in parallel systems.

We will see that the resulting speedup also depends on several factors, including element size,
vector length, and the functional characteristics of the processed example.

Example for eight processing cores and f=0.1:

1 1 1

= = 4.71
0.1+ %

5(8) = = =~
0.1+ 0.1125 0.2125

Parallel Programming and Processing on RISC-V 9

0.5 RISC-V paralel programming platforms (K1/X1 SoC - X60)

In this book, we use the modern multi-core RV64GCV architecture for parallel programming at both the

vector (SIMD) and multi-core (MIMD) levels.

0.5.1 RISC-V K1 SoC architecture
RISC-V CPUs such as the X60, integrated into the K1 SoC, are based on standard modern
architectures that support vector instructions with a vector register length of 256 bits.

This means we can execute vector instructions operating in parallel on either eight 32-bit integer or
floating-point values, or on sixty-four 8-bit elements.
The K1 SoC integrates eight X60 CPUs, enabling the parallel execution of eight vector threads. This
provides an effective parallel processing capacity equivalent to 8 x 8 = 64 integer or floating-point

operations.

The boards run a Debian-based operating system, Bianbu OS, or Ubuntu OS.
The following figure shows the architectural block diagram of the X60 CPU .

Clusterd Cluster] RCPU Subsystem
X60-Al SRAM 256KB
| Vector | - o[CAN/CAN-FD
RISCY RISCV vecter R.CANFD
: = z
G4GCVE Core v 64GCVE Core e Power
— B (=
R_SPI
aac pcache | | | [A00L FE Slsinatic o]
HP-MIC
| Ext-Codec
[skizemzxTom | [512K 12] o] LINE-IN R_Debug
o B [rmax] { Wakeup Trigger]
@ ear_| [[2xrussr | 1 Mcmw |
DAC_L
[Coherent Interconnect Bus | — [10x RPWM | o UNEOUT |
DAC.R ———{ DACR
Internal Memory l AON PMU
A
. f
High Speed 1/0 Subsystem
System Control System UsB3.0 Comb x1 PCle2.1 (1lane)
- PHY 6r USB3.0 (DRD)
Security | [BootRoM | [maibox | e
1 x
LM Efuse Serdes %2 PCle2.1 (2lane)
PLIC DMA
m? PHY of x1 PCle2.1 (1lane)
Crypto
[_coeo_] Spinlock__| WDOG Serdes x2PCle2.1 (2lane)
PHY or x1PCle2.1 (1lane)
Unit | T-Sensor]
_[PLLs | [Main PMU
ay 2 : = Thock & Reset
Image Processing
XTALOSC Crystal I RTC timer é ERE]
Source Debug < F36E/TI 365] MIPLCSIA
= DEC b L e
$ -7
= Low Speed /0 Subsystem £ .
§ wwevcomfe{ [TS
WART [Tzxse][axsoio | [[3xespem | [(2-lane
CAN/CAN-FD (12| |
IR-RX [oeusrr [wex][20cPwm | Display Controllers
5D Card
Be [canfo][axiec | [128xcPi0_| B0 MIPCSIC by
1920 pixel buffer ..y__
Connectivity Subsystem DPUT —
(1920 pixel buffer) ‘ N
1 xeMMC Ty { MIPLDSI }——-I (adang)
51/503.0 [_emmcs: | e
USB2.0 0TG [UsB2.0 0TG l External Graphics Processing Unit
[Ussaonue | [use20Host | MW:W DDR
I } ! Interface [onna v
100/1000M PHY Controller D""‘Efts -f ;, L -
2'GMAC pen LIZC |
Ethernet L~ Vulkan 1.2
NOR Flash [asPl] | DDR PHY ‘ {SPiLcD SPI Displa)
kv Mul Decode Crypta
32-bit LPDDR4/LPDDRAx H.264/H.265 Dec(4K) TRNG/AES/RSA/ECC/SHAZ/HMAC
@2666MT H.264/H.265 Enci4K) SM2/5M3/SM4

Fig. 0.5 SpacemiT K1/X1 SoC block architecture with eight X60 cores in two clusters.

Parallel Programming and Processing on RISC-V

Compliance with RISC-V 64GCVB standard ISA extensions and RVA22 profile
e Each core has 32KB L1-I cache and 32KB L1-D cache
e Each cluster contains 512KB L2 cache
e Cluster 0 integrates 512KB TCM (Tight-Coupled Memory) for Al extension
¢ L1 cache supports MESI consistency protocol, instead L2 cache supports MOESI consistency
protocol
¢ Vector extension: RVV1.0 with VLEN 256/128-bit and x2 execution width
¢ Al customized instructions explored and implemented in Cluster 0
e Support for CLINT and PLIC with a total of 256 interrupts
e Support for RISC-V performance PMU
e Support for SV39 virtual memory
e Support for 32 PMP entries adhering to RISC-V security framework
e Support for RISC-V debug framework
¢ Support for the following extensions:
e RV64IM AF D C V and many Binary extension plus Al customized instructions

0.5.2 X60 memory and registers

Each processing core (X60) communicates with local cache memory. The processing units operate on
3 sets of registers : general purpose registers (x0-x31), floating point registers (£0-£32) and the
blcok of vvector registers (v0-v31).

A

1 Memory | S 7
—
11%‘ fsw
Floating-Point General Purpose
Register File (FRF) Register File (XRF)
it i :
vs* ! —fmvix !
f31 %31
«—FLEN bits— 4—XLEN bits—p
Lfcv‘[fowful, 1|:vl,f,l[u]—, T I
ot wiul.f, fovt.Ifu]
vimu.fs VIMV.X.S
vimv.vf VIIV.VLX
vfrnI s.f VIMVLS.X
Fig. 0.6 The use of general-purpose registers | Vector Register File

(XRF) and floating-point registers (FRF) is
straightforward. However, before using the vector [0]
registers (VRF), it is necessary to configure the | Vi \
data format, including the element size and type. | V2 \
This configuration specifies how the data will be '
processed by subsequent vector instructions.

Y

v3l
VLEN bits

v

A

—_

Parallel Programming and Processing on RISC-V 1

0.5.3 Spacemit Muse Pi Pro

Muse Pi Pro shown in the following picture is a feature-packed, credit card-sized SBC powered by
the SpacemIT M1 octa-core 64-bit RISC-V Al SoC with a 2 TOPS NPU and equipped with up to
16GB LPDDR4x and 128GB eMMC flash.

The single board computer features gigabit Ethernet and a WiFi 6 + Bluetooth 5.3 module for
connectivity, HDMI and MIPI DSI display interfaces, two MIPI CSl interfaces, a 3.5mm audio jack,
four USB 3.0 ports, an M.2 socket for an NVMe SSD or wireless module, a mini PCIE socket for WiFi
and 4G LTE/5G cellular connector, and a 40-pin GPIO header for expansion. That’s quite a lot of
features for such a compact board.

Fig 0.7 MUSE Pi Pro board from
SpacemiT integrating X60 SoC

For our laboratory exercises and examples, we used the MUSE Pi Pro development board. However,
the same experiments can also be carried out on other compatible hardware platforms, including:

« Banana Pi BPI-F3
* Orange Pi RV2

Fig 0.8 Banana Pi F3 board from integrating X60 SoC

Parallel Programming and Processing on RISC-V 12

r‘ ﬂuﬂ USB3.0 (Above)

Type-C/Power port @——— USB2.0 (Below)

5V Out

Debug TTL UART RTC Connector

(2Pin 1.25mm)
M.2 M-Key 2230
PCle SSD Slot BOOT Key
SPI Flash PMU

RESET Key
2GB/4GB/8GB LPDDR4X 26Pin headers
M.2 2230 Mounting WEFIS+E19.0

PCB Nut Audio In/Out

LED POWER Key

CAM1 Wi-Fi 5+BT5.0 Antenna pedestal

Fig 0.9 Orange Pl RV2 with K1 - SoC

Note: The Orange Pi RV2 is available at entry-level pricing of approximately $30-40 (or €30-40),

depending on the RAM configuration.

Parallel Programming and Processing on RISC-V

13

0.6 Experimenting with Parallel Programming (SIMD and MIMD)

The programming languages and tools for parallel programming on RISC-V are based on C/C++ and

assembly.

Vector programming (SIMD) requires access to vector instructions, which can be achieved either

through assembly-level programming, by using C intrinsics that directly map to the corresponding

assembly instructions, or by forcing the modern gee compiler (version 14) to exploit the vector

instructions (options and march parameters) during C language program compilation.

Our choice is to use both assembly and C programming with (and without) compiler options.
This requires a brief introduction to assembly programming before working with vector instructions.

C/C++
main program

evaluation
exectution time
speedup

3 memory
arguments
o~ E— results <
CIC++
function
scalarivector
processing
assembly -
function
vector processing

{external)

CiC++

main program

evaluation
exectution time
speedup

Fig 0.10 Using C/C++ for scalar/vector programming and
(a) assembly for vector programming (external function)
(b) openMP C/C++ for multithreaded programming

Parallel Programming and Processing on RISC-V

e

—

Y

memory
arguments
results

v 1

ClC++

function
scalarivector
processing

w | OpenMP (C/C++)
>

function
multithreaded
processing

)

{_

14

0.7 GCC Optimization Levels and RVV

0.7.1 Using compilation options:

e -02

The “safe” optimization level.
Enables most optimizations that don’t increase code size too much or risk
breaking strict standards compliance.
Vectorization:
» Enables basic auto-vectorization (loop vectorization using RVV when
available).
» Focuses on conservative heuristics: loops must be simple, with clear
bounds and no tricky dependencies.
* May leave some scalar code unchanged if the compiler thinks vectorization
won'’t help.
Goal: balance speed and binary size.

The “aggressive” optimization level.
Enables all of -02 plus extra optimizations that can increase code size or
sometimes reduce performance on certain workloads.
Vectorization:
+ Enables more aggressive auto-vectorization, including loops with more
complex dependencies or memory patterns.
* Turns on loop unrolling and vectorization of outer loops where possible.
+ Tries to generate wider RVV instructions and may use masked vector
ops for non-trivial loops.

+ Goal: maximize speed, even if the binary grows and compile time is longer.

0.7.2 Example (RVV impact)

Consider a function with a simple loop - vec.c:

1 #include <stddef.h>

2
3
4
5
6
7
8
9
e -02:
e -03:

void addf (float * __ _restrict a,

const float * _ restrict b,
const float * _ restrict c,
size_t n) {
for (size_t i = 0; i < n; ++i)
a[i] = b[i] + c[i];

GCC will vectorize if it can prove alignment and safety.
Uses RVV intrinsics like v1e32.v, vadd.vv, vse32.v.

GCC will try to vectorize even if safety is less obvious.

Might unroll the loop, issuing multiple RVV vector ops per iteration.

Could choose wider vector length assumptions (VLEN) and rely on masking for
leftovers.

May inline small helper functions into vectorized code.

Parallel Programming and Processing on RISC-V 15

0.7.3 Practical Differences for RISC-V RVV

+ -02 - reliable, portable, conservative RVV usage.
» -03 - pushes GCC to emit more RVV instructions, especially for complex loops, at the
cost of larger code and sometimes worse cache performance.
* In practice, on current RISC-V GCC backends:
* -02 already gives you RVV vectorization on “obvious” loops.
« -03 gives you more outer-loop and unrolled vectorization, which can boost
throughput on large arrays but may bloat binaries.

0.7.4 GCC switches

Below are the exact GCC switches you can use to see which loops got vectorized (and which didn’t),
plus a tiny example to try on your RV2.
These print vectorizer diagnostics during compile.

Show only successful vectorizations on stderr
$ gcc -02 -march=rvé64gcv —-fopt-info-vec vec.c -c -S
vec.c:7:24: optimized: loop vectorized using variable length vectors

Show only missed opportunities (and why)
gcc -02 -march=rvé64gcv —-fopt—-info-vec-missed vec.c -c

Show everything about vectorization (both optimized + missed)
gcc -02 -march=rvé4gcv —-fopt-info-vec vec.c -c

Send them to files (cleaner):

gcc -02 -march=rvé4gcv -fopt-info-vec-optimized=vec.opt \
—-fopt-info-vec—-missed=vec.missed \
vec.c -c

Parallel Programming and Processing on RISC-V 16

0.8 Objectives and Methodology

Our first objective is to demonstrate how to program with mixed languages, combining C/C++ and
assembly, in order to implement simple parallelizable functions such as computation, image
processing, and image generation. To support this goal, we provide a series of examples organized as
programming laboratory exercises.

The second objective is to evaluate the execution time (measured in seconds) of the selected
examples and compare the results to calculate the corresponding speedup. For each example
introduced, we measure the scalar execution time (a plain C function without optimization) and
compare it with the vectorized execution time to determine the performance gain.

The vectorized versions are produced both by compiling C/C++ code with optimization options (-02
and -03) and by writing direct assembly programs. This methodology is further extended to compare
single-core and multi-core execution times, allowing us to analyze and quantify the speedup achieved
through parallelism.

Finally, to reinforce understanding of the worked examples, each laboratory session concludes with a
short set of follow-up exercises. (To do:)

Parallel Programming and Processing on RISC-V 17

0.9 Lab’s organization
The book covers the following subjects:

» Basic assembly programming for RISC-V

* Introduction to vector programming and processing with RISC-V vector (RVV) instructions
» Vector programming for simple numerical calculations

» Vector programming for basic image processing (using OpenCV and OpenGL)

* Fundamentals of multi-core (multi-threaded) programming with OpenMP in C/C++

» Multi-threaded programming for simple image processing tasks

» Combined multi-threaded and vector programming

The above subjects are organized as a series of programming and processing laboratories:

* Lab 1: Introduction to RISC-V Assembly Programming
Covers the basics of RISC-V assembly language, register usage, and simple arithmetic/logic
operations.

+ Lab 2: Introduction to RISC-V Vector Assembly Programming |
Introduces vector registers and the fundamentals of SIMD operations on small datasets.

+ Lab 3: Introduction to RISC-V Vector Assembly Programming Il
Extends vector programming concepts to more advanced operations, including loops and
mixed data types.

* Lab 4: Vector Programming for Image Processing |
Demonstrates the use of vector instructions for basic image manipulation tasks such as pixel
transformations.

+ Lab 5: Vector Programming for Image Processing Il
Explores more complex image processing operations, including filtering and convolution, using
vectorized code.

+ Lab 6: Parallel Multi-Core Programming with OpenMP for Image Processing
Introduces OpenMP in C/C++ for parallel execution across multiple cores, applied to image-
processing workloads.

+ Lab 7: Combined Vector and Multi-Core Programming for Image Processing
Integrates vectorization and multi-core parallelism to maximize performance in image-
processing applications.

* Lab 8: Vector and Multi-core processing for Al applications

All programs presented in the book are available for download at our smartcomputerlab github
repository:

https://github.com/smartcomputerlab/RISC-V-Parallel-SIMD—and-MIMD—
Programming—and-Processing—-Book/tree/main

Attention:

Before starting the assembly programming labs, we introduce the essential elements of assembly
language.

This section may be skipped and revisited later during the programming and processing labs, allowing
you to proceed directly to Lab 1 if preferred

Parallel Programming and Processing on RISC-V 18

https://github.com/smartcomputerlab/RISC-V-Parallel-SIMD-and-MIMD-Programming-and-Processing-Book/tree/main
https://github.com/smartcomputerlab/RISC-V-Parallel-SIMD-and-MIMD-Programming-and-Processing-Book/tree/main

0.10 RISC-V assembly language

0.10.1 Introduction

Programming RISC-V with assembly language offers several key advantages, especially in scenarios
where control, optimization, and hardware awareness are critical. Below are some of the primary
benefits:

1. Fine-Grained Control of Hardware

e Direct Access to CPU Features: RISC-V assembly allows developers to directly interact
with processor instructions, registers, memory, and I/O devices. This level of control is
essential for hardware-level tasks such as interrupt handling, device drivers, or manipulating
specific hardware peripherals.

e Custom Instruction Set Extensions: RISC-V allows for user-defined custom instructions, so
writing in assembly helps exploit these extensions effectively when needed for specialized
tasks.

2. Performance Optimization

¢ Manual Optimization: Assembly language gives developers the ability to optimize their code
for speed, size, or power efficiency by manually tuning instructions, avoiding unnecessary
overhead, and making decisions about which operations are faster for a given processor.

¢ Instruction-Level Parallelism: Developers can control how instructions are scheduled,
potentially reducing instruction stalls, pipeline hazards, and maximizing the use of the CPU’s
pipelines.

e Efficient Use of Memory: Assembly allows developers to minimize memory usage, a critical
factor for embedded systems or resource-constrained environments like micro-controllers.

3 Small Code Size

¢ Minimal Overhead: Writing in assembly produces minimal overhead since high-level
language constructs like loops, conditionals, and function calls are replaced with direct
machine instructions. This is particularly useful in systems with limited memory (e.g.,
embedded systems).

¢ Precise Control of Memory Layout: In assembly, the programmer has direct control over
how data and code are laid out in memory, allowing for optimized and compact memory
usage.

4 Embedded Systems and Real-Time Applications

e Low-Level Access: Assembly language is often used in embedded and real-time systems
where low-level control is essential, such as controlling specific peripherals, real-time
performance tuning, and interrupt handling.

¢ Deterministic Execution: In real-time systems, knowing the exact execution time of
instructions is important. Assembly provides a clear understanding of how long each
instruction will take, ensuring real-time constraints are met.

Writing in assembly helps developers gain a deep understanding of the underlying RISC-V
architecture, including how memory is accessed, how instructions are executed, and how
control flow is managed.

By learning to write in assembly, programmers also develop insights into what compilers do behind the
scenes, allowing for better high-level code optimization and debugging.

Parallel Programming and Processing on RISC-V 19

0.10.2 RISC-V: base assembly instruction set
The RISC-V base integer instruction set, commonly referred to as the “I” (Integer) instruction set,
provides a small yet complete collection of instructions required for general-purpose computing. It is
defined in both the RV32l (32-bit) and RV64I (64-bit) variants. This instruction set includes
fundamental arithmetic, logical, control-flow, memory-access, and system instructions.
In our laboratories, we use a K1 (SpacemiT) single-board computer (SBC) as the development
platform. The K1 integrates two quad-core clusters, each based on X60 processors implementing the
RV64GV architecture.
Below is an overview of the basic instructions in the RISC-V “I” instruction set, organized by
purpose.
Note the typical RISC-style architectural separation into:

» Arithmetic and logical instructions

* Memory load and store instructions

» Control transfer instructions (jumps and branches)

1. Arithmetic Instructions
These instructions perform integer arithmetic operations.
® add rd, rsl, rs2— Addtworegisters (rd = rsl + rs2).
® addi rd, rsl, imm — Addimmediate (rd = rsl + imm).
® sub rd, rsl, rs2 — Subtract(rd = rsl - rs2).
® lui rd, imm — Load upperimmediate (rd = imm << 12).
® auipc rd, imm— Addupperimmediateto PC (rd = PC + (imm << 12)).

2. Logical Instructions

These instructions perform bitwise logical operations.
® and rd, rsl, rs2—Bitwise AND (rd = rsl & rs2).
® andi rd, rsl, imm— Bitwise AND withimmediate (rd = rsl & imm).
® or rd, rsl, rs2 —Bitwise OR (rd = rsl | rs2).
® ori rd, rsl, imm — Bitwise OR withimmediate (rd = rsl | imm).
® xor rd, rsl, rs2— Bitwise XOR (rd = rsl * rs2).
® xori rd, rsl, imm— Bitwise XOR with immediate (rd = rsl1 ~ imm).

3. Shift Instructions
These instructions perform left or right shifts.
® s11 rd, rsl, rs2 — Shiftleftlogical (rd = rsl << rs2).
® sl11i rd, rsl, imm— Shiftleftlogicalimmediate (rd = rsl << imm).
* srl rd, rsl, rs2 — Shiftrightlogical (rd = rsl >> rs2).
® srli rd, rsl, imm — Shiftrightlogical immediate (rd = rsl >> imm).
® sra rd, rsl, rs2 — Shiftrightarithmetic (rd = rsl1 >> rs2).
® srai rd, rsl, imm— Shiftright arithmetic immediate (rd = rsl >> imm).

4. Comparison Instructions
These instructions compare values in registers and set the destination register to 1 if the comparison is
true, otherwise set it to 0.

® slt rd, rsl, rs2— Setiflessthan (rd = (rsl < rs2)).

® slti rd, rsl, imm — Setif less than immediate (rd = (rsl < imm)).

® sltu rd, rsl, rs2— Setiflessthan (unsigned) (rd = (rsl < rs2) unsigned).

® sltiu rd, rsl, imm — Setiflessthanimmediate (unsigned) (rd = (rsl < imm) unsigned).

5. Memory Access Instructions

Parallel Programming and Processing on RISC-V 20

These instructions load data from memory into registers or store data from registers into memory.
® lw rd, imm(rsl) —Loadword (rd = Mem[rsl + imm]).
® 1h rd, imm(rsl) — Load halfword.
® 1b rd, imm(rsl) — Load byte.
® 1lbu rd, imm(rsl) — Load byte unsigned.
® 1lhu rd, imm(rsl) — Load halfword unsigned.
® sw rs2, imm(rsl) — Storeword (Mem[rsl + imm] = rs2).
® sh rs2, imm(rsl) — Store halfword.
® sb rs2, imm(rsl) — Store byte.

6. Control Transfer Instructions
These instructions control the flow of execution, including conditional branches and unconditional
jumps.
® beq rsl, rs2, offset — Branchif equal.
®* bne rsl, rs2, offset — Branch if notequal.
® blt rsl, rs2, offset — Branchifless than (signed).
®* bge rsl, rs2, offset — Branch if greater than or equal (signed).
® bltu rsl, rs2, offset — Branchifless than (unsigned).
®* bgeu rsl, rs2, offset — Branch if greater than or equal (unsigned).
®* jal rd, offset — Jump and link (used for function calls).
® Jjalr rd, offset(rsl) — Jump and link register.

7. System Instructions
These instructions provide system-level control, including traps and environment calls (for example, for
operating system services).
® ecall — Environment call (used to invoke system services, e.g., syscalls).
®* ebreak — Environment break (used for debugging or breakpoints).
[]
8. No-Operation Instruction
This instruction does nothing and is often used for padding.
®* nop — No operation (addi %0, x0, 0iscommonly used as nop).

0.10.3 Example program: Sum of two humbers
Here is a simple RISC-V assembly program that adds two numbers and stores the result in a register.

.text
.globl _start
_start:
Load two numbers into registers
1i a0, 10 # Load immediate value 10 into register a0
1i al, 20 # Load immediate value 20 into register al

Perform addition

add a2, a0, al # a2 = a0 + al (10 + 20 = 30)
Exit the program using ecall

1i a7, 93 # Syscall number for exit
ecall # Make system call

Assembly (as) and load (1d) of the above program:
$as add_simple.s -o add_simple.o

$1d add_simple.o -o add_simple

$./add_simple

$

Parallel Programming and Processing on RISC-V

21

Register Name AB|l Mame Description

X0 ZEero Hard-Wired Zero

11 ra Retun Address

X2 sp Stack Pointer

X3 ap Global Pointer

xd tp Thread Pointer

*E-xT 11-12 Temporary Registers

x8 s0ifp Saved Register / Frame Pointer

x9 s1 Saved Register
*10-x11 al-a1 Function Argument / Return Value Registers
®12-x17 az-al Function Argument Registers
x18-x27 s2-s11 Saved Registers
¥28-x31 1316 Temporary Registers

Fig 0.8 RISC-V 32/64 register file:t1,t2, ..,t3-t6 and a0-a7 - user data registers; ad-a7 -
function argument registers, a0, al - return value registers

Parallel Programming and Processing on RISC-V 22

0.10.4 RISC-V (V) assembly vector instruction set

Below is a compact, simplified list of commonly used RISC-V Vector Extension (RVV) instructions
enough to follow most basic examples like the vector add program.

1. Setup & Configuration
* vsetvli rd, rsl, eX, mY, ta|tu, ma|mu - SetVL (Vector Length) based on
rsl elements, element width (e8/e16/e32/e64), LMUL (m1/m2/m4/m8), and tail/mask
policy.
* vsetvl rd, rsl, rs2- SetVL based on registers (dynamic settings).
2. Vector Load / Store
* vleX.v vd, (rsl) -Lload X-bit elements from memory into vector register vd.
*+ vseX.v vd, (rsl) - Store X-bit elements from vd to memory.
(X canbe 8,16,32,64)
3. Integer Arithmetic
e vadd.vv vd, vs2, vsl-Add vectors.
e vadd.vx vd, vs2, rsl- Add vector and scalar.
* wvsub.vv / vsub.vx - Subtract.
* vmul.vv / vmul.vx - Multiply.
* vdiv.vv / vdiv.vx - Divide (signed).
* vrem.vv / vrem.vx - Remainder (signed).
4. Logical / Bitwise
e vand.vv / vand.vx- AND.
* vor.vv / vor.vx-OR.
* wvxor.vv / vxor.vx- XOR.
5. Comparison (Sets mask register)
* vmseq.vv / vmseq.vx - Equal
 vmsne.vv / vmsne.vx - Notequal
* wvmslt.vv / vmslt.vx - Less than (signed).
* vmsle.vv / vmsle.vx - Less orequal (signed).
6. Mask Operations
* vmerge.vvm vd, vs2, vsl, v0 - Merge based on mask v0.
* vmv.v.i / vmv.v.x / vmv.v.v -Moveimmediate, scalar, or vector to vector.
7.Floating-Point (if F/D extension present)
* vfadd.vv / vfadd.vf-FP add.
* vfsub.vv / vfsub.vf - FP subtract.
* vfmul.vv / vEmul.vf - FP multiply.
e vfdiv.vv / vfdiv.vf - FPdivide.
Other Useful Ops
* vmv.x.s rd, vsl - Move first element of vector to scalar register.
* vmv.s.x vd, rsl- Move scalar to first element of vector.
* vslideup.vx / vslidedown.vx - Shift elements within a vector.

Parallel Programming and Processing on RISC-V 23

0.10.4.1 Initial vector instruction - vsetvli
vsetvli sets VL (vector length) and VTYPE (vector element configuration) before executing
vector instructions.

It tells the hardware:
* How many vector elements will be processed in this loop iteration.
» What size and grouping of elements to use.
* How to handle leftover elements (“tail”) and masked lanes.
General format

vsetvli rd, rsl, e<E>, m<LMUL>, <tail-policy>, <mask-policy>

rd - destination register to hold the actual VL chosen by hardware.

rs1 - requested number of elements (remaining elements to process).
e<E> - element width in bits: €8, e16, €32, e64 (and larger if supported).
m<LMUL> - LMUL (vector register group multiplier): m1, m2, m4, m8, etc.

Tail policy - what to do with unused lanes at the end of a vector:
ta (tail agnostic) — hardware can leave unused lanes undefined.
tu (tail undisturbed) — unused lanes keep their old values.
Mask policy - what to do with lanes where the mask bit is O:
ma (mask agnostic) — inactive lanes can be undefined.
mu (mask undisturbed) — inactive lanes keep their old values.

Below we give a compact reference table for common vsetvli configurations. It shows how element
size (SEW), group multiplier (LMUL), and tail/mask policies (TA/TU, MA/MU) are typically combined:

SEW LMUL Tail
Instruction (Element (Group Polic Mask Policy Notes
Size) Multiplier) y
. TU (tail Standard 32-bit vector
1 vsetvli x10, x11, g5y 1 undisturbe MY (Mask ops, safe for partial
e32,ml,tu, mu d) undisturbed) vectors
, vsetvli x5, x6, ... ’ TA (@il MA (mask Faster, rg;tytgg/ masked
el6,m2,ta,ma agnostic) agnostic) overwritten
. High throughput with
3 Zth;iltf"naxs’ 64-bit 4 TU MA large vectors, tails
e preserved
. Efficient for byte-level
4 Z:ﬁ‘é;iﬁﬁ& X0, gpit 1/2 (mf2) TU MU operations, tails/masks
! e preserved
Very wide vector
vsetvli x3, xO0, i grouping, maximum
5 e32,m8, ta,ma 32-bit 8 TA MA parallelism but not tail-
safe

Parallel Programming and Processing on RISC-V 24

0.10.4.2 How to read and understand RVV assembly

. Identify the ABI / arguments

Scalar regs: a0-a7 carry args/returns; t0-t6 temps; s0-s11 callee-saved.
Typical pointer args: aO=srcA, al=srcB, a2=dst, a3=count /bytes.

. Find the outer loop structure

Look for labels like . Lloop, .Ldone.
Counters are often in a3 or £ ?; decremented by VL each iteration.

. Decode vsetvli / vsetvl

vsetvli rd, rsl, e32, ml, ta, ma

* SEW (e8/el6/e32/e64) = element width.

* LMUL (m1/m2/..) = register grouping (vector register usage).

* rdgets VL (lanes processed this pass).

* ta/ma tail/mask policy: ta, ma = don’t preserve inactive lanes.
RS1 is usually “remaining elements”.
Understand memory access
Unit-stride loads/stores: viexX.v / vseX.v.
Strided loads: vlseX.v vd, (rsl), rs2 (stride in bytes in register).
Segmented loads/stores (if used): visegN* (de-interleave), but many tools don’t support
every variant.
Scalar pointer bumps: add a0, a0, t0<<log2 (bytes/elt).

. Core vector ops

Integer: vadd/vsub/vmul/vdiv, logical vand/vor/vxor.

Widen/narrow: vzext /vsext .v£2 (widen x2), vasrl.wi etc (narrow—often missing on
older envs).

Reductions: vredsum.vs, vredmax.vs, etc. Seed is in the second source vector.

. Reductions & widening

Sum of 8/16/32-bit products often widens to avoid overflow:
* widen inputs (e.g., e16—e32) then vmul at €32, or
e if vwmul. * exists, use it, else emulate via widen+vmu 1.
After reduction, move scalar out: vmv.x.s rd, v?.
Tail handling
Length-agnostic loops rely on VL possibly < vector width at the last iteration; no scalar
epilogue needed.

. Common pitfalls

lllegal operands: strided load stride must be in a register, not an immediate (e.g., vise8.v
vd, (rsl), a3, not ..., 3).

Unsupported instructions: narrowing ops (vneclip*, wvnsrl¥*) or widening multiplies
(vwmul. *) may be missing in reduced RVV subsets—replace with widen+shift+strided-pack
patterns.

BGR vs RGB order mistakes.

Signed vs unsigned widening (vsext vs vzext).

Parallel Programming and Processing on RISC-V 25

0.10.4.3 Mini example + explanation
Code

c[i] = a[i] + b[i] for n elements (int32)
a0=a, al=b, a2=c, a3=n
.Lloop:

vsetvli t0, a3, e32, ml, ta, ma # choose VL for remaining int32s
vle32.v vO0, (a0) # load A chunk
vle32.v vl, (al) # load B chunk
vadd.vv v2, v0, vl # v2 = v0 + vl
vse32.v v2, (a2) # store C chunk
slli tl, t0, 2 # bytes = VL*4
add a0, a0, t1 # bump pointers
add al, al, t1

add a2, a2, t1

sub a3, a3, to # remaining -= VL
bnez a3, .Lloop

ret

What each part means
* wvsetvli: configures SEW=32, LMUL=1, sets VL (how many elems this pass).
* vle32.v:loads VL 32-bit ints from the current pointer.
* vadd.vv:lane-wise add.
* vse32.v:stores VL results.
* Pointer bump uses VL * sizeof (int32);loop repeats until a3==0.

Parallel Programming and Processing on RISC-V

26

	0.1 Introduction
	0.1.1 Why parallel processing ?
	0.1.2 Why RISC architectures are good for parallel processing ?
	0.1.3 Why RISC-V in particular is attractive ?
	0.2 SIMD versus MIMD
	0.2.1 SIMD operational mode
	0.2.2 MIMD operational mode
	0.2.3 Lanes and Threads

	0.3 Data caches and parallel processing performance
	0.3.1 How data caches affect SIMD (vector processing)
	0.3.2 How data caches affect MIMD (multicore processing)

	0.4 Amdahl’s Law
	0.5 RISC-V paralel programming platforms (K1/X1 SoC - X60)
	0.5.1 RISC-V K1 SoC architecture
	0.5.2 X60 memory and registers
	0.5.3 Spacemit Muse Pi Pro
	0.5.4 Other boards with SpacemiT X60 SoC

	0.6 Experimenting with Parallel Programming (SIMD and MIMD)
	0.7 GCC Optimization Levels and RVV
	0.7.1 Using compilation options:
	0.7.2 Example (RVV impact)
	0.7.3 Practical Differences for RISC-V RVV
	0.7.4 GCC switches

	0.8 Objectives and Methodology
	0.9 Lab’s organization
	Attention:
	0.10 RISC-V assembly language
	0.10.1 Introduction
	0.10.2 RISC-V: base assembly instruction set
	0.10.3 Example program: Sum of two numbers
	Assembly (as) and load (ld) of the above program:

	0.10.4 RISC-V (V) assembly vector instruction set
	0.10.4.1 Initial vector instruction - vsetvli
	0.10.4.2 How to read and understand RVV assembly

	0.10.4.3 Mini example + explanation
	Code
	What each part means

