loT 5

Tools
5.1 aes_tools.py

aes_tools.py
import ucryptolib

AES encryption function using ucryptolib

def aes_encrypt (data, aes_key) :
cipher = ucryptolib.aes(aes_key, 1) # 1 = ECB mode
encrypted = cipher.encrypt (data) # data size must be multiple 16 bytes
return encrypted

AES decryption function

def aes_decrypt (encrypted_data, aes_key) :
cipher = ucryptolib.aes(aes_key, 1) # 1 = ECB mode
data = cipher.decrypt (encrypted_data) # data size must be multiple 16 bytes
return data

5.2 nvs_tools.py

nvs_tools.py
import machine, ustruct
import esp32

Function to write data to internal flash memory using NVS (Non-Volatile Storage)
def write_nvs_ts (key, value):
nvs_key = esp32.NVS("thingspeak") # Open the NVS namespace "thingspeak"
nvs_key.set_blob(key, value) # Store a byte array (blob) with a key
nvs_key.commit () # Commit the changes

Function to read data from internal flash memory using NVS
def read_nvs_ts (key) :
nvs_key = esp32.NVS("thingspeak") # Open the NVS namespace "thingspeak"
try:
buff = bytearray(32)
value = nvs_key.get_blob (key,buff) # Retrieve the byte array (blob) using the key
return value,buff
except OSError:
print (f"Key '{key}' not found in EEPROM.")
return None

Function to write data to internal flash memory using NVS (Non-Volatile Storage)
def write_nvs_power (key, value):
nvs_key = esp32.NVS("power") # Open the NVS namespace "thingspeak"
nvs_key.set_blob(key, value) # Store a byte array (blob) with a key
nvs_key.commit () # Commit the changes

Function to read data from internal flash memory using NVS
def read_nvs_power (key) :
nvs_key = esp32.NVS("power") # Open the NVS namespace "thingspeak"
try:
buff = bytearray(32)
value = nvs_key.get_blob (key,buff) # Retrieve the byte array (blob) using the key
return value,buff
except OSError:
print (f"Key '{key}' not found in EEPROM.")
return None

5.3 rtc_tools.py

rtc_tools.py
import machine
import ustruct

rtc = machine.RTC()
Function to store four integer/float values in RTC memory
def rtc_store_param(cycle, pos, neg): # these values define next cycle length factor
data = rtc.memory()
c,p,n,s,d = ustruct.unpack('3i2f', data);
data = ustruct.pack('3i2f', cycle, pos,negqg,s,d)
rtc.memory (data)

def rtc_load_param() :
Retrieve the packed data from RTC memory
c=1; p=0; n=0; s=20.0; d=0.1
data = rtc.memory ()
if not data:

Low Power loT Architectures SmartComputerLab

def

def

def

def

data = ustruct.pack('3i2f',c,p,n,s,d)
rtc.memory (data)
Unpack the integers from the byte array
c,p,n,s,d = ustruct.unpack('3i2f', data);
return ¢, p, n

rtc_store_delta(delta): # stores last sent sensor and delta values

data = rtc.memory ()

c,p,n,s,d = ustruct.unpack('3i2f', data);
data = ustruct.pack('3i2f',c,p,n,s,delta)
rtc.memory (data)

rtc_load_delta(): # loads stored sensor and delta values,

c=0; p=0; n=0; s=20.0; d=0.1
data = rtc.memory()
if not data:
data = ustruct.pack('3i2f',c,p,n,s,d)
rtc.memory (data)
c,p,n,s,d = ustruct.unpack('3i2f', data);
return d

rtc_store_sensor (sensor) : # stores last sent sensor and delta values

data = rtc.memory ()

c,p,n,s,d = ustruct.unpack('3i2f', data);
data = ustruct.pack('3i2f',c,p,n, sensor,d)
rtc.memory (data)

rtc_load_sensor(): # loads stored sensor and delta values,

c=0; p=0; n=0; s=20.0; d=0.1
data = rtc.memory()
if not data:
data = ustruct.pack('3i2f',c,p,n,s,d)
rtc.memory (data)
c,p,n,s,d = ustruct.unpack('3i2f', data);
return s

or default init

or default init

54 wifi_tools.py

wifi_tools.py
import network
import time

def

def

def

connect_WiFi (ssid, passwd, timeout=10):

Connect to the given WiFi network using the specified SSID and password.

:param ssid: The SSID of the WiFi network.
:param passwd: The password of the WiFi network.

:param timeout: Maximum time in seconds to wait for connection.

:return: True if connected, False otherwise.
non
wlan = network.WLAN (network.STA_IF)
wlan.active (True)
wlan.config (txpower=5.0) # or even 5.0
If already connected to the same network, return True
if wlan.isconnected() and wlan.config('essid') == ssid:
print (wlan.ifconfig())
return True
Connect to the given SSID
wlan.connect (ssid, passwd)
Wait for connection or timeout
start = time.time ()
while not wlan.isconnected() :
if time.time () - start > timeout:
return False
time.sleep (1)
print (wlan.ifconfig())
return True

disconnect_WiFi () :
non

Disconnect from the currently connected WiFi network.
wlan = network.WLAN (network.STA_IF)
if wlan.isconnected():

wlan.disconnect ()

scan_WiFi () :

Scan for available WiFi networks.

:return: A list of tuples containing network information:
(ssid, bssid, channel, RSSI, authmode, hidden)

non

wlan = network.WLAN (network.STA_IF)

wlan.active (True)

return wlan.scan()

Low Power loT Architectures SmartComputerLab

5.5 at24_tools.py

at24_tools.py
import machine
import time
import ustruct

class AT24C32:
def _ init__ (self, i2c, address=0x50):
self.i2c = i2c
self.address = address
self._capacity = 4096 # AT24C32 has 4KB capacity

def write_at24 (self, addr, buff):

if not isinstance(buff, (bytes, bytearray)):
raise ValueError ("Buffer must be of type 'bytes' or 'bytearray'")

if addr < 0 or addr + len(buff) > self._capacity:
raise ValueError ("Address out of range")

for i in range(len(buff)):
self.i2c.writeto(self.address, bytes([addr >> 8, addr & OxFF, buff[i]]))
time.sleep(0.01) # EEPROM write delay
addr += 1

def read_at24 (self, addr, length):
if addr < 0 or addr + length > self._capacity:
raise ValueError ("Address out of range")
self.i2c.writeto(self.address, bytes([addr >> 8, addr & OxFF]))
return self.i2c.readfrom(self.address, length)

def capacity(self):
return self._capacity

at24_check.py
from machine import Pin, I2C
import time

Initialize I2C (GPIO21 = SDA, GPIO22 = SCL)
i2c = I2C(0, scl=Pin(9), sda=Pin(8), freq=100000)

Common I2C address range for AT24CXX EEPROMs
EEPROM_ADDRESSES = [0x50 + i for i in range(8)] # 0x50 — 0x57

def check_eeprom() :
print ("Scanning I2C bus for AT24CXX EEPROM...")
devices = i2c.scan()
if not devices:
print ("No I2C devices found.")
return False

found = False
for addr in EEPROM_ADDRESSES:
if addr in devices:

try:
Try reading 1 byte from address 0x00
i2c.writeto(addr, b'\x00') # Set memory pointer to 0x00
data = i2c.readfrom(addr, 1) # Read 1 byte

print (£"EEPROM found at address Ox{addr:02X}. Data at 0x00: {data[0]:02X}")
found = True
except Exception as e:
print (f"Device at Ox{addr:02X} responded but did not behave like EEPROM. Error:
{e}™)

if not found:
print ("No AT24CXX EEPROM found on the I2C bus.")
return found

5.6 at24_to_nvs.py

at24_to_nvs.py

from nvs_tools import *
from at24_tools import *
from at24_check import *

def at24_to_nvs():

nvs_key = "param"

if check_eeprom() :
I2C_SCL = 9; I2C_SDA = 8
i2c = machine.I2C(0, scl=machine.Pin(I2C_SCL), sda=machine.Pin(I2C_SDA))
eeprom = AT24C32(i2c)
ts_addr = 0x00 # Starting address in EEPROM for ThingSpeak meta-parameters
pow_addr = 0x80 # 255 - starting address for power mata-parameters
print ("Reading from AT24C32...")
ts_rparam = eeprom.read_at24(ts_addr, 20) # len ts_rparam
pow_rparam = eeprom.read_at24 (pow_addr, 24) # len pow_rparam
print ("Writing to NVS...")
write_nvs_ts (nvs_key, ts_rparam)

Low Power loT Architectures SmartComputerLab

write_nvs_power (nvs_key, pow_rparam)

else:

print ("no AT24CXX module found..")
print ("Reading from NVS...")
len,ts_rparam = read_nvs_ts (nvs_key)
if len:

chan, wkey=ustruct .unpack ("ilé6s", ts_rparam)
print ("len:",len, "ts_chan:",chan, "ts_wkey:",wkey.decode())
len, pow_rparam = read_nvs_power (nvs_key)

if len:
cdef, cmax,dmin, dmax, tlow, thigh=ustruct.unpack ("2i4£f", pow_rparam)
print ("len:",len,", cdef:",cdef,", cmax:",cmax,", dmin:",dmin,", dmax:",dmax,",

tlow:",tlow,", thigh:",thigh)

5.7 lora_init.py

#lora_init.py

from machine import Pin, SPI

import time

import sx127x # SX127x LoRa driver (ensure the library is installed)
import esp32

——— LoRa Pins and SPI Bus Setup —--- HT
lora_pins = {
'dio_0': 2, # DIOO pin for interrupt
'ss': 4, # Slave Select (SS)
'reset': 10, # Reset pin
'sck': 6, # SPI Clock pin
'miso': 5, # SPI MISO pin
'mosi': 7 # SPI MOSI pin

}

SPI bus configuration for SX1276
lora_spi = SPI(

baudrate=10000000, # Set baudrate to 10 MHz
polarity=0, # Clock polarity (CPOL)
#
#

phase=0, Clock phase (CPHA)

bits=8, 8 bits per transfer

firstbit=SPI.MSB, # MSB first

sck=Pin(lora_pins['sck'], Pin.OUT, Pin.PULL_DOWN), # SCK (clock)
mosi=Pin(lora_pins['mosi'], Pin.OUT, Pin.PULL_UP), # MOSI (Master Out Slave In)
miso=Pin(lora_pins['miso'], Pin.IN, Pin.PULL_UP), # MISO (Master In Slave Out)

)

LoRa configuration with default parameters
lora_default = {

'frequency': 868E6, # Frequency for Europe (868 MHz ISM band)
'tx_power_level': 14, # Transmission power level (14 dBm)
'signal_bandwidth': 125E3, # Signal bandwidth (125 kHz)
'spreading_factor': 11, # Spreading factor (7)

'coding_rate': 8, # Coding rate (4/5)
'preamble_length': 8, # Preamble length (8)
'implicit_header': False, # Explicit header mode
'sync_word': 0x12, # LoRa sync word

'enable_crc': True # Enable CRC for error detection

}

——— SX1276 LoRa Driver Initialization ———

def lora_init():
Reset the SX1276
reset_pin = Pin(lora_pins['reset'], Pin.OUT)
reset_pin.value (0)
time.sleep(0.01) # Short delay
reset_pin.value (1)
Initialize the SX1276 LoRa driver with default parameters
lora = sx127x.SX127x(spi=lora_spi, pins=lora_pins, parameters=lora_default)
Confirm initialization
print ("LoRa modem initialized with default parameters.")
return lora

#lora_init () # only for test

Low Power loT Architectures SmartComputerLab

Low Power loT Architectures SmartComputerLab

	IoT 5
	Tools
	5.1 aes_tools.py
	5.2 nvs_tools.py
	5.3 rtc_tools.py
	5.4 wifi_tools.py
	5.5 at24_tools.py
	5.6 at24_to_nvs.py
	5.7 lora_init.py

