
IoT 5

Tools

5.1 aes_tools.py

aes_tools.py
import ucryptolib

AES encryption function using ucryptolib
def aes_encrypt(data,aes_key):
 cipher = ucryptolib.aes(aes_key, 1) # 1 = ECB mode
 encrypted = cipher.encrypt(data) # data size must be multiple 16 bytes
 return encrypted
AES decryption function
def aes_decrypt(encrypted_data,aes_key):
 cipher = ucryptolib.aes(aes_key, 1) # 1 = ECB mode
 data = cipher.decrypt(encrypted_data) # data size must be multiple 16 bytes
 return data

5.2 nvs_tools.py
nvs_tools.py
import machine, ustruct
import esp32

Function to write data to internal flash memory using NVS (Non-Volatile Storage)
def write_nvs_ts(key, value):
 nvs_key = esp32.NVS("thingspeak") # Open the NVS namespace "thingspeak"
 nvs_key.set_blob(key, value) # Store a byte array (blob) with a key
 nvs_key.commit() # Commit the changes

Function to read data from internal flash memory using NVS
def read_nvs_ts(key):
 nvs_key = esp32.NVS("thingspeak") # Open the NVS namespace "thingspeak"
 try:
 buff = bytearray(32)
 value = nvs_key.get_blob(key,buff) # Retrieve the byte array (blob) using the key
 return value,buff
 except OSError:
 print(f"Key '{key}' not found in EEPROM.")
 return None

Function to write data to internal flash memory using NVS (Non-Volatile Storage)
def write_nvs_power(key, value):
 nvs_key = esp32.NVS("power") # Open the NVS namespace "thingspeak"
 nvs_key.set_blob(key, value) # Store a byte array (blob) with a key
 nvs_key.commit() # Commit the changes

Function to read data from internal flash memory using NVS
def read_nvs_power(key):
 nvs_key = esp32.NVS("power") # Open the NVS namespace "thingspeak"
 try:
 buff = bytearray(32)
 value = nvs_key.get_blob(key,buff) # Retrieve the byte array (blob) using the key
 return value,buff
 except OSError:
 print(f"Key '{key}' not found in EEPROM.")
 return None
--

5.3 rtc_tools.py
rtc_tools.py
import machine
import ustruct

rtc = machine.RTC()
Function to store four integer/float values in RTC memory
def rtc_store_param(cycle, pos, neg): # these values define next cycle length factor
 data = rtc.memory()
 c,p,n,s,d = ustruct.unpack('3i2f', data);
 data = ustruct.pack('3i2f',cycle,pos,neg,s,d)
 rtc.memory(data)

def rtc_load_param():
 # Retrieve the packed data from RTC memory
 c=1; p=0; n=0; s=20.0; d=0.1
 data = rtc.memory()
 if not data:

Low Power IoT Architectures SmartComputerLab 1

 data = ustruct.pack('3i2f',c,p,n,s,d)
 rtc.memory(data)
 # Unpack the integers from the byte array
 c,p,n,s,d = ustruct.unpack('3i2f', data);
 return c, p, n

def rtc_store_delta(delta): # stores last sent sensor and delta values
 data = rtc.memory()
 c,p,n,s,d = ustruct.unpack('3i2f', data);
 data = ustruct.pack('3i2f',c,p,n,s,delta)
 rtc.memory(data)

def rtc_load_delta(): # loads stored sensor and delta values, or default init
 c=0; p=0; n=0; s=20.0; d=0.1
 data = rtc.memory()
 if not data:
 data = ustruct.pack('3i2f',c,p,n,s,d)
 rtc.memory(data)
 c,p,n,s,d = ustruct.unpack('3i2f', data);
 return d

def rtc_store_sensor(sensor): # stores last sent sensor and delta values
 data = rtc.memory()
 c,p,n,s,d = ustruct.unpack('3i2f', data);
 data = ustruct.pack('3i2f',c,p,n,sensor,d)
 rtc.memory(data)

def rtc_load_sensor(): # loads stored sensor and delta values, or default init
 c=0; p=0; n=0; s=20.0; d=0.1
 data = rtc.memory()
 if not data:
 data = ustruct.pack('3i2f',c,p,n,s,d)
 rtc.memory(data)
 c,p,n,s,d = ustruct.unpack('3i2f', data);
 return s
--

5.4 wifi_tools.py
wifi_tools.py
import network
import time

def connect_WiFi(ssid, passwd, timeout=10):
 """
 Connect to the given WiFi network using the specified SSID and password.
 :param ssid: The SSID of the WiFi network.
 :param passwd: The password of the WiFi network.
 :param timeout: Maximum time in seconds to wait for connection.
 :return: True if connected, False otherwise.
 """
 wlan = network.WLAN(network.STA_IF)
 wlan.active(True)
 wlan.config(txpower=5.0) # or even 5.0
 # If already connected to the same network, return True
 if wlan.isconnected() and wlan.config('essid') == ssid:
 print(wlan.ifconfig())
 return True
 # Connect to the given SSID
 wlan.connect(ssid, passwd)
 # Wait for connection or timeout
 start = time.time()
 while not wlan.isconnected():
 if time.time() - start > timeout:
 return False
 time.sleep(1)
 print(wlan.ifconfig())
 return True

def disconnect_WiFi():
 """
 Disconnect from the currently connected WiFi network.
 """
 wlan = network.WLAN(network.STA_IF)
 if wlan.isconnected():
 wlan.disconnect()

def scan_WiFi():
 """
 Scan for available WiFi networks.
 :return: A list of tuples containing network information:
 (ssid, bssid, channel, RSSI, authmode, hidden)
 """
 wlan = network.WLAN(network.STA_IF)
 wlan.active(True)
 return wlan.scan()
--

Low Power IoT Architectures SmartComputerLab 2

5.5 at24_tools.py
at24_tools.py
import machine
import time
import ustruct

class AT24C32:
 def __init__(self, i2c, address=0x50):
 self.i2c = i2c
 self.address = address
 self._capacity = 4096 # AT24C32 has 4KB capacity

 def write_at24(self, addr, buff):
 if not isinstance(buff, (bytes, bytearray)):
 raise ValueError("Buffer must be of type 'bytes' or 'bytearray'")
 if addr < 0 or addr + len(buff) > self._capacity:
 raise ValueError("Address out of range")
 for i in range(len(buff)):
 self.i2c.writeto(self.address, bytes([addr >> 8, addr & 0xFF, buff[i]]))
 time.sleep(0.01) # EEPROM write delay
 addr += 1

 def read_at24(self, addr, length):
 if addr < 0 or addr + length > self._capacity:
 raise ValueError("Address out of range")
 self.i2c.writeto(self.address, bytes([addr >> 8, addr & 0xFF]))
 return self.i2c.readfrom(self.address, length)

 def capacity(self):
 return self._capacity
--
at24_check.py
from machine import Pin, I2C
import time

Initialize I2C (GPIO21 = SDA, GPIO22 = SCL)
i2c = I2C(0, scl=Pin(9), sda=Pin(8), freq=100000)

Common I2C address range for AT24CXX EEPROMs
EEPROM_ADDRESSES = [0x50 + i for i in range(8)] # 0x50 - 0x57

def check_eeprom():
 print("Scanning I2C bus for AT24CXX EEPROM...")
 devices = i2c.scan()
 if not devices:
 print("No I2C devices found.")
 return False

 found = False
 for addr in EEPROM_ADDRESSES:
 if addr in devices:
 try:
 # Try reading 1 byte from address 0x00
 i2c.writeto(addr, b'\x00') # Set memory pointer to 0x00
 data = i2c.readfrom(addr, 1) # Read 1 byte
 print(f"EEPROM found at address 0x{addr:02X}. Data at 0x00: {data[0]:02X}")
 found = True
 except Exception as e:
 print(f"Device at 0x{addr:02X} responded but did not behave like EEPROM. Error:
{e}")

 if not found:
 print("No AT24CXX EEPROM found on the I2C bus.")
 return found
--

5.6 at24_to_nvs.py
at24_to_nvs.py
from nvs_tools import *
from at24_tools import *
from at24_check import *

def at24_to_nvs():
 nvs_key = "param"
 if check_eeprom():
 I2C_SCL = 9; I2C_SDA = 8
 i2c = machine.I2C(0, scl=machine.Pin(I2C_SCL), sda=machine.Pin(I2C_SDA))
 eeprom = AT24C32(i2c)
 ts_addr = 0x00 # Starting address in EEPROM for ThingSpeak meta-parameters
 pow_addr = 0x80 # 255 - starting address for power mata-parameters
 print("Reading from AT24C32...")
 ts_rparam = eeprom.read_at24(ts_addr, 20) # len ts_rparam
 pow_rparam = eeprom.read_at24(pow_addr, 24) # len pow_rparam
 print("Writing to NVS...")
 write_nvs_ts(nvs_key, ts_rparam)

Low Power IoT Architectures SmartComputerLab 3

 write_nvs_power(nvs_key, pow_rparam)
 else:
 print("no AT24CXX module found..")
 print("Reading from NVS...")
 len,ts_rparam = read_nvs_ts(nvs_key)
 if len:
 chan,wkey=ustruct.unpack("i16s",ts_rparam)
 print("len:",len,"ts_chan:",chan,"ts_wkey:",wkey.decode())
 len,pow_rparam = read_nvs_power(nvs_key)
 if len:
 cdef,cmax,dmin,dmax,tlow,thigh=ustruct.unpack("2i4f",pow_rparam)
 print("len:",len,", cdef:",cdef,", cmax:",cmax,", dmin:",dmin,", dmax:",dmax,",
tlow:",tlow,", thigh:",thigh)
--

5.7 lora_init.py
#lora_init.py

from machine import Pin, SPI
import time
import sx127x # SX127x LoRa driver (ensure the library is installed)
import esp32

--- LoRa Pins and SPI Bus Setup --- HT
lora_pins = {
 'dio_0': 2, # DIO0 pin for interrupt
 'ss': 4, # Slave Select (SS)
 'reset': 10, # Reset pin
 'sck': 6, # SPI Clock pin
 'miso': 5, # SPI MISO pin
 'mosi': 7 # SPI MOSI pin
}

SPI bus configuration for SX1276
lora_spi = SPI(
 baudrate=10000000, # Set baudrate to 10 MHz
 polarity=0, # Clock polarity (CPOL)
 phase=0, # Clock phase (CPHA)
 bits=8, # 8 bits per transfer
 firstbit=SPI.MSB, # MSB first
 sck=Pin(lora_pins['sck'], Pin.OUT, Pin.PULL_DOWN), # SCK (clock)
 mosi=Pin(lora_pins['mosi'], Pin.OUT, Pin.PULL_UP), # MOSI (Master Out Slave In)
 miso=Pin(lora_pins['miso'], Pin.IN, Pin.PULL_UP), # MISO (Master In Slave Out)
)

LoRa configuration with default parameters
lora_default = {
 'frequency': 868E6, # Frequency for Europe (868 MHz ISM band)
 'tx_power_level': 14, # Transmission power level (14 dBm)
 'signal_bandwidth': 125E3, # Signal bandwidth (125 kHz)
 'spreading_factor': 11, # Spreading factor (7)
 'coding_rate': 8, # Coding rate (4/5)
 'preamble_length': 8, # Preamble length (8)
 'implicit_header': False, # Explicit header mode
 'sync_word': 0x12, # LoRa sync word
 'enable_crc': True # Enable CRC for error detection
}

--- SX1276 LoRa Driver Initialization ---
def lora_init():
 # Reset the SX1276
 reset_pin = Pin(lora_pins['reset'], Pin.OUT)
 reset_pin.value(0)
 time.sleep(0.01) # Short delay
 reset_pin.value(1)
 # Initialize the SX1276 LoRa driver with default parameters
 lora = sx127x.SX127x(spi=lora_spi, pins=lora_pins, parameters=lora_default)
 # Confirm initialization
 print("LoRa modem initialized with default parameters.")
 return lora

#lora_init() # only for test

Low Power IoT Architectures SmartComputerLab 4

Low Power IoT Architectures SmartComputerLab 5

	IoT 5
	Tools
	5.1 aes_tools.py
	5.2 nvs_tools.py
	5.3 rtc_tools.py
	5.4 wifi_tools.py
	5.5 at24_tools.py
	5.6 at24_to_nvs.py
	5.7 lora_init.py

