
IoT Lab 4

Low Power Adaptive LoRa protocols
In the previous labs involving direct and close terminals using WiFi and WiFi MAC–WiFi connections, we
integrated confirmed transmissions and security mechanisms.
To provide the same low-power control and adaptive behavior, it is necessary to implement ACK packets
together with an AES-based encryption scheme.
The ESP32-C3 SoCs integrates hardware AES accelerators, which allow these security mechanisms to be
implemented efficiently with minimal energy overhead.
ACK packets may serve two different purposes:

• Short ACK packets, which simply confirm successful reception of a data packet,
• Control ACK packets, which additionally carry meta-parameters used to adapt and optimize the

operation of the low-power protocol.
•

This approach ensures both secure communication and energy-efficient adaptive control across different
types of IoT terminals.

Let us remind the parameters and the meta-parameters used in Low Power Protocols.
--

• cycle: with base_cycle (in seconds) and max_cycle factor
• delta: with min_delta and max_delta
• threshold: t_low and t_high

The cycle parameter defines the duration of the low-power stage. The initial base_cycle value is fixed either
in the program code or stored in non-volatile memory (NVS) (for example, 10 seconds). The effective cycle
duration is obtained by multiplying the base_cycle by a cycle factor.

The cycle factor starts at 1 and evolves dynamically based on changes in the sensor values. When there are
two consecutive high-power stages without transmission, the cycle factor is multiplied by 2 and stored in
low-power RTC SRAM. This updated value is then used during the next high-power stage.

Because the main SRAM is powered off during the low-power stage, the cycle factor must be saved in RTC
memory before entering deep sleep.

Conversely, when there are two consecutive high-power stages with transmission, the cycle factor is
divided by 2, reducing the duration of the next low-power stage.

The delta parameter, when applied to a temperature sensor, represents the difference between the last
transmitted value and the current measured value. The delta value is initially set to max_delta (for
example, 0.1). During extended periods without transmission, the delta value may gradually decrease toward
min_delta, increasing measurement sensitivity. In contrast, during periods with frequent transmissions, the
delta value may increase toward max_delta to reduce unnecessary updates.

The threshold parameter defines the upper (t_high) and lower (t_low) limits of acceptable sensor values.

When the current sensor reading crosses either threshold, the system must:

• Transmit the data packet during the high-power stage,
• Reduce the cycle factor to ensure faster subsequent updates.

Low Power IoT Architectures SmartComputerLab 1

The adaptive adjustment of both the cycle factor and the delta parameter enables:

• An exponential extension of the low-power stage duration (i.e., the cycle time) when conditions are
stable,

• Fine-tuning of the delta value to achieve maximum precision in sensor measurements.

For correct operation, the current cycle factor and delta values must be stored in low-power RTC SRAM,
which retains its contents during the SoC’s deep-sleep mode.
However, RTC SRAM loses its contents when the device is completely powered off.
To preserve meta-parameters such as base_cycle, max_cycle, min_delta, max_delta, t_low,
and t_high across power cycles, these values must be stored in non-volatile internal memory (NVS).

4.1 Remote Terminal – sender
The following is the complete code of the sender node:

import time, ustruct
from machine import I2C, Pin, freq, deepsleep
from sensors import sensors
from lora_init import lora_init
from rtc_tools import *
from nvs_tools import *
from aes_tools import *
Initialize LoRa communication
lora = lora_init()
aes_key="smartcomputerlab" # constant - 1 ECB mode
cdef=1; ts_chan=1234; ncycle=1
ACK_wait_time = 2 # ACK waiting time depends on the protocol and data rate
nvs_key="param"
led = Pin(3, Pin.OUT)

def onReceive(lora_modem,payload):
 global cdef; global ncycle
 if len(payload)==16: # the payload: max_cycle, t_high, t_low
 ack=aes_decrypt(payload,aes_key)
 chan,cntr,c_par,d_par=ustruct.unpack('3if',ack) # ack parameters - to confirm
 if chan==ts_chan:
 print("short ACK received") # no channel test
 lora.sleep() # only for deepsleep
 time.sleep(0.1)
 deepsleep(ncycle*cdef*1000)

 if len(payload)==32: # the payload: max_cycle, t_high, t_low
 ack=aes_decrypt(payload,aes_key)
 chan,cntr,c_def,c_max,d_min,d_max,t_low,t_high=ustruct.unpack("4i4f",ack) # meta parameters
 if chan==ts_chan:
 print("long ACK parameters received") # no channel test
 value=ustruct.pack("2i4f",c_def,c_max,d_min,d_max,t_low,t_high)
 write_nvs_power(nvs_key, value)
 print("new parameters written to nvs")
 lora.sleep() # only for deepsleep
 time.sleep(0.1)
 ncycle,npos,nneg=rtc_load_param()
 print(ncycle*cdef)
 deepsleep(ncycle*cdef*1000)

def send_lora_data(ts_chan,ts_wkey,l,t,h):
 try:
 message = f"L:{l:.2f},T:{t:.2f},H:{h:.2f}"
 print("Sending LoRa packet:", message)
 data = ustruct.pack('i16s3f',ts_chan,ts_wkey,l,t,h) # 32 bytes - short version
 enc_data=aes_encrypt(data,aes_key)
 lora.println(enc_data)
 print("LoRa encrypted packet sent successfully.")
 except Exception as e:
 print("Failed to send LoRa packet:", e)
Main program

def main():
 global cdef; global ts_chan; global ncycle
 freq(20000000)
 print("Reading ts from internal EEPROM...")
 len,ts_rparam = read_nvs_ts(nvs_key)
 if len:
 ts_chan,ts_wkey=ustruct.unpack("i16s",ts_rparam)
 print("len:",len,"ts_chan:",ts_chan,"ts_wkey:",ts_wkey.decode())
 print("Reading pow from internal EEPROM...")
 len,pow_rparam = read_nvs_power(nvs_key)
 if len:

Low Power IoT Architectures SmartComputerLab 2

 cdef,cmax,dmin,dmax,tlow,thigh=ustruct.unpack("2i4f",pow_rparam)
 print("len:",len,", cdef:",cdef,", cmax:",cmax,", dmin:",dmin,", dmax:",dmax,",
tlow:",tlow,", thigh:",thigh)

 lora.onReceive(onReceive)
 lora.receive()
 while True:
 ncycle,npos,nneg= rtc_load_param()
 ssens= rtc_load_sensor(); sdelta= rtc_load_delta()
 print("ncycle:" +str(ncycle));
 lumi, temp, humi = sensors(sda=8, scl=9)
 print("Luminosity:", lumi, "lux")
 print("Temperature:", temp, "C")
 print("Humidity:", humi, "%")
 print("current: "+str(temp)+" saved: "+str(ssens)); # sensor is temperature
 print(dmin,dmax,sdelta);
 if abs(ssens-temp)>sdelta or temp>thigh or temp<tlow : # testing temp difference and
thresholds
 print("data SENT")
 rtc_store_sensor(temp)
 led.on()
 if npos :
 if ncycle > 2:
 ncycle= int(ncycle/2)
 else:
 if sdelta< dmax:
 sdelta = sdelta*2 # new delta
 rtc_store_delta(sdelta)

 npos=npos+1; nneg=0 # positive and negative counters
 rtc_store_param(ncycle,npos,nneg)
 send_lora_data(ts_chan,ts_wkey,lumi, temp, humi)
 lora.receive()
 time.sleep(ACK_wait_time)
 print("data packet sent, no ack received")
 send_lora_data(ts_chan,ts_wkey,lumi, temp, humi)
 lora.receive()
 time.sleep(ACK_wait_time)
 print("data packet re-sent, no ack received")
 led.off()
 else:
 print("data packet NOT sent")
 if nneg :
 if ncycle < cmax:
 ncycle = int(ncycle*2) # maximum factor 64 (64*15sec)
 else :
 if sdelta> dmin:
 sdelta = sdelta/2
 rtc_store_delta(sdelta)

 npos=0; nneg=nneg+1
 rtc_store_param(ncycle,npos,nneg)
 # waiting for ACK frame
 lora.sleep() # only for deepsleep
 time.sleep(0.1)
 print(ncycle*cdef)
 print(sdelta)
 deepsleep(ncycle*cdef*1000) # 10*1000 miliseconds

Run the main program
main()

To do:
To improve the above program we have to decompose the following condition into two parts:

if abs(ssens-temp)>sdelta or temp>thigh or temp<tlow : # testing temp difference and thresholds
…
else
-

if abs(ssens-temp)>sdelta : # testing temp difference
..
elif temp>thigh or temp<tlow : # testing thresholds
..
else:
..
--

Low Power IoT Architectures SmartComputerLab 3

4.1.1 The completed code for terminal
--
import time, ustruct
from machine import I2C, Pin, freq, deepsleep
from sensors import sensors
from lora_init import lora_init
from rtc_tools import *
from nvs_tools import *
from aes_tools import *
Initialize LoRa communication
lora = lora_init()
aes_key="smartcomputerlab" # constant - 1 ECB mode
cdef=1; ts_chan=1234; ncycle=1
ACK_wait_time = 2 # ACK waiting time depends on the protocol and data rate
nvs_key="param"
led = Pin(3, Pin.OUT)

def onReceive(lora_modem,payload):
 global cdef; global ncycle
 if len(payload)==16: # the payload: max_cycle, t_high, t_low
 ack=aes_decrypt(payload,aes_key)
 chan,cntr,c_par,d_par=ustruct.unpack('3if',ack) # ack parameters - to confirm
 if chan==ts_chan:
 print("short ACK received") # no channel test
 lora.sleep() # only for deepsleep
 time.sleep(0.1)
 deepsleep(ncycle*cdef*1000)

 if len(payload)==32: # the payload: max_cycle, t_high, t_low
 ack=aes_decrypt(payload,aes_key)
 chan,cntr,c_def,c_max,d_min,d_max,t_low,t_high=ustruct.unpack("4i4f",ack) # ack parameters
- to confirm and save
 if chan==ts_chan:
 print("long ACK parameters received") # no channel test
 value=ustruct.pack("2i4f",c_def,c_max,d_min,d_max,t_low,t_high)
 write_nvs_power(nvs_key, value)
 print("new parameters written to nvs")
 lora.sleep() # only for deepsleep
 time.sleep(0.1)
 ncycle,npos,nneg=rtc_load_param()
 print(ncycle*cdef)
 deepsleep(ncycle*cdef*1000)

def send_lora_data(ts_chan,ts_wkey,l,t,h):
 try:
 message = f"L:{l:.2f},T:{t:.2f},H:{h:.2f}"
 print("Sending LoRa packet:", message)
 data = ustruct.pack('i16s3f',ts_chan,ts_wkey,l,t,h) # 32 bytes - short version
 enc_data=aes_encrypt(data,aes_key)
 lora.println(enc_data)
 print("LoRa encrypted packet sent successfully.")
 except Exception as e:
 print("Failed to send LoRa packet:", e)
Main program

def main():
 global cdef; global ts_chan; global ncycle
 freq(20000000)
 print("Reading ts from internal EEPROM...")
 len,ts_rparam = read_nvs_ts(nvs_key)
 if len:
 ts_chan,ts_wkey=ustruct.unpack("i16s",ts_rparam)
 print("len:",len,"ts_chan:",ts_chan,"ts_wkey:",ts_wkey.decode())
 print("Reading pow from internal EEPROM...")
 len,pow_rparam = read_nvs_power(nvs_key)
 if len:
 cdef,cmax,dmin,dmax,tlow,thigh=ustruct.unpack("2i4f",pow_rparam)
 print("len:",len,", cdef:",cdef,", cmax:",cmax,", dmin:",dmin,", dmax:",dmax,",
tlow:",tlow,", thigh:",thigh)

 lora.onReceive(onReceive)
 lora.receive()
 while True:
 ncycle,npos,nneg= rtc_load_param()
 ssens= rtc_load_sensor(); sdelta= rtc_load_delta()
 print("ncycle:" +str(ncycle));
 lumi, temp, humi = sensors(sda=8, scl=9)
 print("Luminosity:", lumi, "lux")
 print("Temperature:", temp, "C")
 print("Humidity:", humi, "%")
 print("current: "+str(temp)+" saved: "+str(ssens)); # sensor is temperature
 print(dmin,dmax,sdelta);
 if abs(ssens-temp)>sdelta : # testing delta and thresholds
 print("data to SEND")
 rtc_store_sensor(temp)
 led.on()

Low Power IoT Architectures SmartComputerLab 4

 if npos :
 if ncycle > 2:
 ncycle= int(ncycle/2)
 else:
 if sdelta< dmax:
 sdelta = sdelta*2 # new delta
 rtc_store_delta(sdelta)

 npos=npos+1; nneg=0 # positive and negative counters
 rtc_store_param(ncycle,npos,nneg)
 send_lora_data(ts_chan,ts_wkey,lumi, temp, humi)
 lora.receive()
 time.sleep(ACK_wait_time)
 print("data packet sent, no ack received")
 send_lora_data(ts_chan,ts_wkey,lumi, temp, humi)
 lora.receive()
 time.sleep(ACK_wait_time)
 print("data packet re-sent, no ack received"); led.off()

 elif temp>thigh or temp<tlow :
 ncycle=1; npos=0; nneg=0; rtc_store_param(ncycle,npos,nneg)
 sdelta = dmin; rtc_store(sdelta)
 send_lora_data(ts_chan,ts_wkey,lumi, temp, humi)
 lora.receive()
 time.sleep(ACK_wait_time)
 print("data packet sent, no ack received")
 send_lora_data(ts_chan,ts_wkey,lumi, temp, humi)
 lora.receive()
 time.sleep(ACK_wait_time)
 print("data packet re-sent, no ack received"); led.off()

 else:
 print("data packet NOT sent")
 if nneg :
 if ncycle < cmax:
 ncycle = int(ncycle*2) # maximum factor 64 (64*15sec)
 else :
 if sdelta> dmin:
 sdelta = sdelta/2
 rtc_store_delta(sdelta)

 npos=0; nneg=nneg+1
 rtc_store_param(ncycle,npos,nneg)
 # waiting for ACK frame
 lora.sleep() # only for deepsleep
 time.sleep(0.1)
 print(ncycle*cdef)
 print(sdelta)
 deepsleep(ncycle*cdef*1000) # 10*1000 miliseconds

Run the main program
main()

Low Power IoT Architectures SmartComputerLab 5

4.1.2 The completed code for receiver - gateway

from machine import Pin, I2C, SPI
import ustruct, random, ubinascii, urequests
from lora_init import *
from display_sensors import *
from aes_tools import *
import machine,time
from wifi_tools import *
WiFi credentials
SSID = 'PhoneAP'
PASS = 'smartcomputerlab'
AES_KEY = b'smartcomputerlab' # Replace with your actual 16-byte AES key
Initialize LoRa modem
lora_modem = lora_init()
rssi=0; chan=0; wkey=""; lumi=0.0; temp=0.0; humi=0.0; precv=0

def send_data_to_thingspeak(lumi, temp, humi, rssi):
 try:
 sf1="&field1="+str(lumi); sf2="&field2="+str(temp); sf3="&field3="+str(humi);
sf4="&field4="+str(rssi)
 url = "https://thingspeak.com/update?key="+wkey.decode()+sf1+sf2+sf3+sf4
 response = urequests.get(url)
 response.close()
 print("Data sent to ThingSpeak:", lumi, temp, humi, rssi)
 except Exception as e:
 print("Failed to send data:", e)

--- Receive LoRa Packet ---
ack_num=0
def onReceive(lora_modem,payload):
 global rssi; global chan; global wkey; global lumi; global temp; global humi; global precv;
global ack_num
 rssi = lora_modem.packetRssi()
 if len(payload)==32:
 precv=1
 rssi = lora_modem.packetRssi()
 data=aes_decrypt(payload,AES_KEY)
 chan, wkey, lumi, temp, humi = ustruct.unpack('i16s3f', data)
 print("Received encrypted LoRa packet with RSSI: "+str(rssi)) #, payload.decode())
 print(chan,wkey,lumi,temp,humi)
 display_sensors(8,9,lumi,temp,humi,0)
 ack_num=ack_num+1; print("ack:",ack_num)
 if ack_num%60 :
 rcycle=random.randint(5,15)
 control=0;
 ack=ustruct.pack('3if',chan,control,rcycle,0.1)
 enc_ack=aes_encrypt(ack,AES_KEY)
 lora_modem.println(enc_ack) # sending ACK packet
 print("send short encrypted ack AES packet")
 else: # sends long ACK encrypted packet every 60 packets
 cntr=0; c_def=1; c_max=64; d_min=0.01;d_max=0.2;t_low=16.0; t_high=26.0
 ack=ustruct.pack("4i4f",chan,cntr,c_def,c_max,d_min,d_max,t_low,t_high)
 enc_ack=aes_encrypt(ack,AES_KEY)
 lora_modem.println(enc_ack) # sending ACK packet
 print("send long encrypted ack AES packet")

 lora_modem.receive()

def main():
 global rssi; global lumi; global temp; global humi; global precv # packet received
 lora_modem.onReceive(onReceive)
 lora_modem.receive()
 while True :
 if precv:
 if connect_WiFi(SSID, PASS):
 print("WiFi connected")
 send_data_to_thingspeak(lumi, temp, humi, rssi)
 time.sleep(1)
 disconnect_WiFi()
 precv=0
 time.sleep(15)

 print("waiting for packet")
 time.sleep(1)

main()

--

Low Power IoT Architectures SmartComputerLab 6

Fig 4.1 IDE terminals output : sender and receiver

Required modules (tools):
In sender (terminal) module:

from rtc_tools import *
from nvs_tools import *
from aes_tools import *

In receiver (gateway) module

from aes_tools import *
from wifi_tools import *

 chan,cntr,c_par,d_par=ustruct.unpack('3if',ack) # ack parameters - to confirm

 chan,cntr,c_def,c_max,d_min,d_max,t_low,t_high=ustruct.unpack("4i4f",ack)

Fig 4.2
Formats of ACK packets send by the gateway to the terminal node.

Low Power IoT Architectures SmartComputerLab 7

Fig 4.3a PPK2 diagram: high_power stage with LoRa transmission phase (SF=7,SB=125KHz,CR=5) with
received ACK packet (no retransmission and no wait time-out); cost ~36mC.

Fig 4.3b PPK2 diagram: high_power stage with LoRa transmission phase (SF=11,SB=125KHz,CR=8) with
no received ACK packet (retransmission and wait time-out – 2sec); cost ~331mC.

Fig 4.3c PPK2 diagram: high_power stage with LoRa transmission phase (SF=11,SB=125KHz,CR=8) with
received ACK packet (no retransmission and no wait time-out – 2sec); cost ~157.49mC.

Low Power IoT Architectures SmartComputerLab 8

4.1.3 Adding external EEPROM (AT24C32) for meta-parameters
To complete the provision of meta-parameters we can use an external EEPROM module ‘such as AT24C32,
pre-loaded with the initial meta-parameters.
This module may be initially connected (bus I2C) to the terminal node or may be connected permanently to the
gateway.
The following is the completed terminal node code:

import time, ustruct
from machine import I2C, Pin, freq, deepsleep
from sensors import sensors
from lora_init import lora_init
from rtc_tools import *
from nvs_tools import *
from aes_tools import *
from at24_to_nvs import *
Initialize LoRa communication
lora = lora_init()
aes_key="smartcomputerlab" # constant - 1 ECB mode
cdef=1; ts_chan=1234; ncycle=1
ACK_wait_time = 2 # ACK waiting time depends on the protocol and data rate
nvs_key="param"
led = Pin(3, Pin.OUT)

def onReceive(lora_modem,payload):
 global cdef; global ncycle
 if len(payload)==16: # the payload: max_cycle, t_high, t_low
 ack=aes_decrypt(payload,aes_key)
 chan,cntr,c_par,d_par=ustruct.unpack('3if',ack) # ack parameters - to confirm
 if chan==ts_chan:
 print("short ACK received") # no channel test
 lora.sleep() # only for deepsleep
 time.sleep(0.1)
 deepsleep(ncycle*cdef*1000)

 if len(payload)==32: # the payload: max_cycle, t_high, t_low
 ack=aes_decrypt(payload,aes_key)
 chan,cntr,c_def,c_max,d_min,d_max,t_low,t_high=ustruct.unpack("4i4f",ack) # ack parameters
- to confirm and save
 if chan==ts_chan:
 print("long ACK parameters received") # no channel test
 value=ustruct.pack("2i4f",c_def,c_max,d_min,d_max,t_low,t_high)
 write_nvs_power(nvs_key, value)
 print("new parameters written to nvs")
 lora.sleep() # only for deepsleep
 time.sleep(0.1)
 ncycle,npos,nneg=rtc_load_param()
 print(ncycle*cdef)
 deepsleep(ncycle*cdef*1000)

def send_lora_data(ts_chan,ts_wkey,l,t,h):
 try:
 message = f"L:{l:.2f},T:{t:.2f},H:{h:.2f}"
 print("Sending LoRa packet:", message)
 data = ustruct.pack('i16s3f',ts_chan,ts_wkey,l,t,h) # 32 bytes - short version
 enc_data=aes_encrypt(data,aes_key)
 lora.println(enc_data)
 print("LoRa encrypted packet sent successfully.")
 except Exception as e:
 print("Failed to send LoRa packet:", e)
Main program

def main():
 global cdef; global ts_chan; global ncycle
 at24_to_nvs() # here we may load new meta-parameters if the AT24 is connected
 freq(20000000)
 print("Reading ts from internal EEPROM...")
 len,ts_rparam = read_nvs_ts(nvs_key)
 if len:
 ts_chan,ts_wkey=ustruct.unpack("i16s",ts_rparam)
 print("len:",len,"ts_chan:",ts_chan,"ts_wkey:",ts_wkey.decode())
 print("Reading pow from internal EEPROM...")
 len,pow_rparam = read_nvs_power(nvs_key)
 if len:
 cdef,cmax,dmin,dmax,tlow,thigh=ustruct.unpack("2i4f",pow_rparam)
 print("len:",len,", cdef:",cdef,", cmax:",cmax,", dmin:",dmin,", dmax:",dmax,",
tlow:",tlow,", thigh:",thigh)

 lora.onReceive(onReceive)
 lora.receive()
 while True:
 ncycle,npos,nneg= rtc_load_param()
 ssens= rtc_load_sensor(); sdelta= rtc_load_delta()
 print("ncycle:" +str(ncycle));
 lumi, temp, humi = sensors(sda=8, scl=9)
 print("Luminosity:", lumi, "lux")

Low Power IoT Architectures SmartComputerLab 9

 print("Temperature:", temp, "C")
 print("Humidity:", humi, "%")
 print("current: "+str(temp)+" saved: "+str(ssens)); # sensor is temperature
 print(dmin,dmax,sdelta);
 if abs(ssens-temp)>sdelta : # testing delta and thresholds
 print("data to SEND")
 rtc_store_sensor(temp)
 led.on()
 if npos :
 if ncycle > 2:
 ncycle= int(ncycle/2)
 else:
 if sdelta< dmax:
 sdelta = sdelta*2 # new delta
 rtc_store_delta(sdelta)

 npos=npos+1; nneg=0 # positive and negative counters
 rtc_store_param(ncycle,npos,nneg)
 send_lora_data(ts_chan,ts_wkey,lumi, temp, humi)
 lora.receive()
 time.sleep(ACK_wait_time)
 print("data packet sent, no ack received")
 send_lora_data(ts_chan,ts_wkey,lumi, temp, humi)
 lora.receive()
 time.sleep(ACK_wait_time)
 print("data packet re-sent, no ack received"); led.off()

 elif temp>thigh or temp<tlow :
 ncycle=1; npos=0; nneg=0; rtc_store_param(ncycle,npos,nneg)
 sdelta = dmin; rtc_store(sdelta)
 send_lora_data(ts_chan,ts_wkey,lumi, temp, humi)
 lora.receive()
 time.sleep(ACK_wait_time)
 print("data packet sent, no ack received")
 send_lora_data(ts_chan,ts_wkey,lumi, temp, humi)
 lora.receive()
 time.sleep(ACK_wait_time)
 print("data packet re-sent, no ack received"); led.off()

 else:
 print("data packet NOT sent")
 if nneg :
 if ncycle < cmax:
 ncycle = int(ncycle*2) # maximum factor 64 (64*15sec)
 else :
 if sdelta> dmin:
 sdelta = sdelta/2
 rtc_store_delta(sdelta)

 npos=0; nneg=nneg+1
 rtc_store_param(ncycle,npos,nneg)
 # waiting for ACK frame
 lora.sleep() # only for deepsleep
 time.sleep(0.1)
 print(ncycle*cdef)
 print(sdelta)
 deepsleep(ncycle*cdef*1000) # 10*1000 miliseconds

Run the main program
main()
--

The above program imports at24_to_nvs.py module:

from nvs_tools import *
from at24_tools import *
from check_at24 import *

def at24_to_nvs():
 nvs_key = "param"
 if check_eeprom():
 I2C_SCL = 9; I2C_SDA = 8
 i2c = machine.I2C(0, scl=machine.Pin(I2C_SCL), sda=machine.Pin(I2C_SDA))
 eeprom = AT24C32(i2c)
 ts_addr = 0x00 # Starting address in EEPROM for ThingSpeak meta-parameters
 pow_addr = 0x80 # 255 - starting address for power mata-parameters
 print("Reading from AT24C32...")
 ts_rparam = eeprom.read_at24(ts_addr, 20) # len ts_rparam
 pow_rparam = eeprom.read_at24(pow_addr, 24) # len pow_rparam
 print("Writing to NVS...")
 write_nvs_ts(nvs_key, ts_rparam)
 write_nvs_power(nvs_key, pow_rparam)
 else:
 print("no AT24CXX module found..")
 print("Reading from NVS...")
 len,ts_rparam = read_nvs_ts(nvs_key)

Low Power IoT Architectures SmartComputerLab 10

 if len:
 chan,wkey=ustruct.unpack("i16s",ts_rparam)
 print("len:",len,"ts_chan:",chan,"ts_wkey:",wkey.decode())
 len,pow_rparam = read_nvs_power(nvs_key)
 if len:
 cdef,cmax,dmin,dmax,tlow,thigh=ustruct.unpack("2i4f",pow_rparam)
 print("len:",len,", cdef:",cdef,", cmax:",cmax,", dmin:",dmin,", dmax:",dmax,",
tlow:",tlow,", thigh:",thigh)

As we see the at24_to-nvs.py module needs at24_tools.py and check_at24.py modules
--
at24_tools.py
import machine
import time
import ustruct

class AT24C32:
 def __init__(self, i2c, address=0x50):
 self.i2c = i2c
 self.address = address
 self._capacity = 4096 # AT24C32 has 4KB capacity

 def write_at24(self, addr, buff):
 if not isinstance(buff, (bytes, bytearray)):
 raise ValueError("Buffer must be of type 'bytes' or 'bytearray'")
 if addr < 0 or addr + len(buff) > self._capacity:
 raise ValueError("Address out of range")
 for i in range(len(buff)):
 self.i2c.writeto(self.address, bytes([addr >> 8, addr & 0xFF, buff[i]]))
 time.sleep(0.01) # EEPROM write delay
 addr += 1

 def read_at24(self, addr, length):
 if addr < 0 or addr + length > self._capacity:
 raise ValueError("Address out of range")
 self.i2c.writeto(self.address, bytes([addr >> 8, addr & 0xFF]))
 return self.i2c.readfrom(self.address, length)

 def capacity(self):
 return self._capacity
--
from machine import Pin, I2C
import time

Initialize I2C (GPIO21 = SDA, GPIO22 = SCL)
i2c = I2C(0, scl=Pin(9), sda=Pin(8), freq=100000)

Common I2C address range for AT24CXX EEPROMs
EEPROM_ADDRESSES = [0x50 + i for i in range(8)] # 0x50 - 0x57

def check_eeprom():
 print("Scanning I2C bus for AT24CXX EEPROM...")
 devices = i2c.scan()
 if not devices:
 print("No I2C devices found.")
 return False

 found = False
 for addr in EEPROM_ADDRESSES:
 if addr in devices:
 try:
 # Try reading 1 byte from address 0x00
 i2c.writeto(addr, b'\x00') # Set memory pointer to 0x00
 data = i2c.readfrom(addr, 1) # Read 1 byte
 print(f"EEPROM found at address 0x{addr:02X}. Data at 0x00: {data[0]:02X}")
 found = True
 except Exception as e:
 print("Device responded but did not behave like EEPROM.")

 if not found:
 print("No AT24CXX EEPROM found on the I2C bus.")
 return found
--

Low Power IoT Architectures SmartComputerLab 11

	IoT Lab 4
	Low Power Adaptive LoRa protocols
	4.1 Remote Terminal – sender
	4.1.1 The completed code for terminal
	4.1.2 The completed code for receiver - gateway
	Required modules (tools):
	4.1.3 Adding external EEPROM (AT24C32) for meta-parameters

