loT Lab 4

Low Power Adaptive LoRa protocols

In the previous labs involving direct and close terminals using WiFi and WiFi MAC-WiFi connections, we
integrated confirmed transmissions and security mechanisms.

To provide the same low-power control and adaptive behavior, it is necessary to implement ACK packets
together with an AES-based encryption scheme.

The ESP32-C3 SoCs integrates hardware AES accelerators, which allow these security mechanisms to be
implemented efficiently with minimal energy overhead.

ACK packets may serve two different purposes:

* Short ACK packets, which simply confirm successful reception of a data packet,
» Control ACK packets, which additionally carry meta-parameters used to adapt and optimize the
operation of the low-power protocol.
This approach ensures both secure communication and energy-efficient adaptive control across different
types of loT terminals.

Let us remind the parameters and the meta-parameters used in Low Power Protocols.

* cycle: with base_cycle (in seconds) and max_cycle factor
e delta: withmin_delta and max_delta
e threshold: t_lowand t_high

The cycle parameter defines the duration of the low-power stage. The initial base_cycle value is fixed either
in the program code or stored in non-volatile memory (NVS) (for example, 10 seconds). The effective cycle
duration is obtained by multiplying the base_cycle by a cycle factor.

The cycle factor starts at 1 and evolves dynamically based on changes in the sensor values. When there are
two consecutive high-power stages without transmission, the cycle factor is multiplied by 2 and stored in
low-power RTC SRAM. This updated value is then used during the next high-power stage.

Because the main SRAM is powered off during the low-power stage, the cycle factor must be saved in RTC
memory before entering deep sleep.

Conversely, when there are two consecutive high-power stages with transmission, the cycle factor is
divided by 2, reducing the duration of the next low-power stage.

The delta parameter, when applied to a temperature sensor, represents the difference between the last
transmitted value and the current measured value. The delta value is initially set to max_delta (for
example, 0.1). During extended periods without transmission, the delta value may gradually decrease toward
min_delta, increasing measurement sensitivity. In contrast, during periods with frequent transmissions, the
delta value may increase toward max_delta to reduce unnecessary updates.

The threshold parameter defines the upper (t_high) and lower (t_1low) limits of acceptable sensor values.

When the current sensor reading crosses either threshold, the system must:

+ Transmit the data packet during the high-power stage,
» Reduce the cycle factor to ensure faster subsequent updates.

Low Power loT Architectures SmartComputerLab 1

The adaptive adjustment of both the cycle factor and the delta parameter enables:

* An exponential extension of the low-power stage duration (i.e., the cycle time) when conditions are
stable,
» Fine-tuning of the delta value to achieve maximum precision in sensor measurements.

For correct operation, the current cycle factor and delta values must be stored in low-power RTC SRAM,
which retains its contents during the SoC’s deep-sleep mode.

However, RTC SRAM loses its contents when the device is completely powered off.

To preserve meta-parameters such as base_cycle, max_cycle, min_delta, max_delta, t_low,
and t_high across power cycles, these values must be stored in non-volatile internal memory (NVS).

4.1 Remote Terminal - sender
The following is the complete code of the sender node:

import time, ustruct

from machine import I2C, Pin, freq, deepsleep
from sensors import sensors

from lora_init import lora_init

from rtc_tools import *

from nvs_tools import *

from aes_tools import *

Initialize LoRa communication

lora = lora_init ()

aes_key="smartcomputerlab" # constant - 1 ECB mode
cdef=1; ts_chan=1234; ncycle=1
ACK_wait_time = 2 # ACK waiting time depends on the protocol and data rate

nvs_key="param"
led = Pin(3, Pin.OUT)

def onReceive (lora_modem, payload) :
global cdef; global ncycle

if len(payload)==16: # the payload: max_cycle, t_high, t_low
ack=aes_decrypt (payload, aes_key)
chan, cntr, c_par,d_par=ustruct.unpack('3if', ack) # ack parameters - to confirm
if chan==ts_chan:
print ("short ACK received") # no channel test
lora.sleep() # only for deepsleep

time.sleep(0.1)
deepsleep (ncycle*cdef*1000)

if len(payload)==32: # the payload: max_cycle, t_high, t_low

ack=aes_decrypt (payload, aes_key)

chan, cntr,c_def,c_max,d_min,d_max, t_low, t_high=ustruct.unpack("4i4f",ack) # meta parameters

if chan==ts_chan:
print ("long ACK parameters received") # no channel test
value=ustruct.pack("2i4f", c_def, c_max,d_min,d_max,t_low,t_high)
write_nvs_power (nvs_key, value)
print ("new parameters written to nvs")

lora.sleep() # only for deepsleep

time.sleep(0.1)

ncycle, npos, nneg=rtc_load_param()

print (ncycle*cdef)

deepsleep (ncycle*cdef*1000)

def send_lora_data(ts_chan,ts_wkey,1,t,h):
try:
message = f"L:{1:.2f},T:{t:.2f},H:{h:.2f}"
print ("Sending LoRa packet:", message)
data = ustruct.pack('il6s3f',ts_chan,ts_wkey,1,t,h) # 32 bytes - short version
enc_data=aes_encrypt (data, aes_key)
lora.println(enc_data)
print ("LoRa encrypted packet sent successfully.")
except Exception as e:
print ("Failed to send LoRa packet:", e)
Main program

def main() :
global cdef; global ts_chan; global ncycle
freq(20000000)
print ("Reading ts from internal EEPROM...")
len,ts_rparam = read_nvs_ts (nvs_key)
if len:
ts_chan, ts_wkey=ustruct.unpack("ilés",ts_rparam)
print ("len:",len, "ts_chan:",ts_chan, "ts_wkey:",ts_wkey.decode())
print ("Reading pow from internal EEPROM...")
len,pow_rparam = read_nvs_power (nvs_key)
if len:

Low Power loT Architectures SmartComputerLab 2

cdef, cmax,dmin, dmax, tlow, thigh=ustruct.unpack ("2i4f", pow_rparam)
print("len:",len,", cdef:",cdef,", cmax:",cmax,", dmin:",dmin,", dmax:",dmax,",
tlow:",tlow,", thigh:",thigh)

lora.onReceive (onReceive)
lora.receive ()
while True:
ncycle, npos,nneg= rtc_load_param()
ssens= rtc_load_sensor(); sdelta= rtc_load_delta()
print ("ncycle:" +str(ncycle));
lumi, temp, humi = sensors(sda=8, scl=9)
print ("Luminosity:", lumi, "lux")
print ("Temperature:", temp, "C")
print ("Humidity:", humi, "%")
print ("current: "+str(temp)+" saved: "+str(ssens)); # sensor is temperature
print (dmin, dmax, sdelta) ;
if abs (ssens-temp)>sdelta or temp>thigh or temp<tlow : # testing temp difference and
thresholds
print ("data SENT")
rtc_store_sensor (temp)
led.on()
if npos
if ncycle > 2:
ncycle= int (ncycle/2)
else:
if sdelta< dmax:
sdelta = sdelta*2 # new delta
rtc_store_delta(sdelta)

npos=npos+l; nneg=0 # positive and negative counters
rtc_store_param(ncycle, npos, nneg)
send_lora_data(ts_chan, ts_wkey,lumi, temp, humi)
lora.receive ()
time.sleep (ACK _wait_time)
print ("data packet sent, no ack received")
send_lora_data(ts_chan,ts_wkey,lumi, temp, humi)
lora.receive ()
time.sleep (ACK_wait_time)
print ("data packet re-sent, no ack received")
led.off()
else:

print ("data packet NOT sent")
if nneg

if ncycle < cmax:

ncycle = int (ncycle*2) # maximum factor 64 (64*15sec)
else :
if sdelta> dmin:

sdelta = sdelta/2
rtc_store_delta(sdelta)

npos=0; nneg=nneg+l
rtc_store_param(ncycle, npos, nneg)
waiting for ACK frame
lora.sleep() # only for deepsleep
time.sleep(0.1)
print (ncycle*cdef)
print (sdelta)
deepsleep (ncycle*cdef*1000) # 10*1000 miliseconds

Run the main program
main ()

To do:

To improve the above program we have to decompose the following condition into two parts:

if abs (ssens-temp)>sdelta or temp>thigh or temp<tlow : # testing temp difference and thresholds
else

if abs(ssens-temp)>sdelta : # testing temp difference

elif temp>thigh or temp<tlow : # testing thresholds

else:

Low Power loT Architectures SmartComputerLab 3

4.1.1 The completed code for terminal

import time, ustruct

from machine import I2C, Pin, freq, deepsleep
from sensors import sensors

from lora_init import lora_init

from rtc_tools import *

from nvs_tools import *

from aes_tools import *

Initialize LoRa communication

lora = lora_init()

aes_key="smartcomputerlab" # constant - 1
cdef=1; ts_chan=1234; ncycle=1

ECB mode

ACK_wait_time = 2 # ACK waiting time depends on the protocol and data rate

nvs_key="param"
led = Pin(3, Pin.OUT)

def onReceive (lora_modem, payload) :
global cdef; global ncycle

if len(payload)==16: # the payload: max_cycle, t_high, t_low

ack=aes_decrypt (payload, aes_key)
chan, cntr, c_par,d_par=ustruct.unpack (
if chan==ts_chan:

print ("short ACK received")

'3if',ack) # ack parameters - to confirm

no channel test

lora.sleep() # only for deepsleep

time.sleep(0.1)
deepsleep (ncycle*cdef*1000)

if len(payload)==32: # the payload: max_cycle, t_high, t_low

ack=aes_decrypt (payload, aes_key)

chan,cntr, c_def,c_max,d_min,d_max,t_low,t_high=ustruct.unpack("4i4f", ack) # ack parameters

— to confirm and save
if chan==ts_chan:
print ("long ACK parameters receiv

ed")

no channel test

value=ustruct.pack("2i4f", c_def, c_max,d_min,d_max, t_low,t_high)

write_nvs_power (nvs_key, value)

print ("new parameters written to nvs")
lora.sleep() # only for deepsleep

time.sleep(0.1)

ncycle, npos, nneg=rtc_load_param()
print (ncycle*cdef)

deepsleep (ncycle*cdef*1000)

def send_lora_data(ts_chan,ts_wkey,1,t,h):
try:
message = f"L:{1:.2f},T:{t:.2f},H: {h:
print ("Sending LoRa packet:", message

data = ustruct.pack('il6s3f',ts_chan,ts_wkey,1,t,h)

enc_data=aes_encrypt (data, aes_key)
lora.println(enc_data)
print ("LoRa encrypted packet sent suc
except Exception as e:
print ("Failed to send LoRa packet:",
Main program

def main() :

L2£}"
)

cessfully.")

e)

global cdef; global ts_chan; global ncycle

£freq(20000000)
print ("Reading ts from internal EEPROM...
len,ts_rparam = read_nvs_ts (nvs_key)
if len:
ts_chan, ts_wkey=ustruct.unpack("ilés"

u)

,ts_rparam)

print ("len:",len, "ts_chan:",ts_chan, "ts_wkey:",ts_wkey.decode())

print ("Reading pow from internal EEPROM. .
len, pow_rparam = read_nvs_power (nvs_key)
if len:

.Il)

cdef, cmax,dmin, dmax, tlow, thigh=ustruct.unpack ("2i4f", pow_rparam)
print("len:",len,", cdef:",cdef,", cmax:",cmax,", dmin:",dmin,",

tlow:",tlow,", thigh:",thigh)

lora.onReceive (onReceive)
lora.receive()
while True:

ncycle, npos,nneg= rtc_load_param()

ssens= rtc_load_sensor(); sdelta= rtc_load_delta()

print ("ncycle:" +str(ncycle));

lumi, temp, humi = sensors(sda=8, scl=9)

print ("Luminosity:", lumi, "lux")
print ("Temperature:", temp, "C")
print ("Humidity:", humi, "%")

print ("current: "+str(temp)+" saved:
print (dmin, dmax, sdelta);

"+str(ssens));

if abs(ssens-temp)>sdelta : # testing delta and thresholds

print ("data to SEND")
rtc_store_sensor (temp)
led.on()

Low Power loT Architectures

SmartComputerLab

32 bytes - short version

dmax:",dmax, ",

sensor is temperature

if npos
if ncycle > 2:
ncycle= int (ncycle/2)
else:
if sdelta< dmax:
sdelta = sdelta*2 # new delta
rtc_store_delta(sdelta)

npos=npos+l; nneg=0 # positive and negative counters
rtc_store_param(ncycle, npos, nneg)
send_lora_data(ts_chan, ts_wkey,lumi, temp, humi)
lora.receive ()

time.sleep (ACK_wait_time)

print ("data packet sent, no ack received")
send_lora_data(ts_chan,ts_wkey,lumi, temp, humi)
lora.receive ()

time.sleep (ACK_wait_time)

print ("data packet re-sent, no ack received"); led.off()

elif temp>thigh or temp<tlow
ncycle=1; npos=0; nneg=0; rtc_store_param(ncycle, npos, nneg)
sdelta = dmin; rtc_store(sdelta)
send_lora_data(ts_chan, ts_wkey,lumi, temp, humi)
lora.receive ()
time.sleep (ACK _wait_time)
print ("data packet sent, no ack received")
send_lora_data(ts_chan,ts_wkey,lumi, temp, humi)
lora.receive ()
time.sleep (ACK_wait_time)
print ("data packet re-sent, no ack received"); led.off()

else:
print ("data packet NOT sent")
if nneg
if ncycle < cmax:
ncycle = int (ncycle*2) # maximum factor 64 (64*15sec)
else :
if sdelta> dmin:
sdelta = sdelta/2
rtc_store_delta(sdelta)

npos=0; nneg=nneg+l
rtc_store_param(ncycle, npos, nneg)
waiting for ACK frame
lora.sleep() # only for deepsleep
time.sleep(0.1)
print (ncycle*cdef)
print (sdelta)
deepsleep (ncycle*cdef*1000) # 10*1000 miliseconds

Run the main program
main ()

Low Power loT Architectures SmartComputerLab

4.1.2 The completed code for receiver - gateway

from machine import Pin, I2C, SPI

import ustruct, random, ubinascii, urequests

from lora_init import *

from display_sensors import *

from aes_tools import *

import machine, time

from wifi_tools import *

WiFi credentials

SSID = 'PhoneAP'

PASS = 'smartcomputerlab'

AES_KEY = b'smartcomputerlab' # Replace with your actual 1l6-byte AES key
Initialize LoRa modem

lora_modem = lora_init ()

rssi=0; chan=0; wkey=""; 1lumi=0.0; temp=0.0; humi=0.0; precv=0

def send_data_to_thingspeak (lumi, temp, humi, rssi):
try:
sfl="&fieldl="+str (lumi); sf2="&field2="+str(temp); sf3="&field3="+str (humi);
sf4="&field4="+str (rssi)
url = "https://thingspeak.com/update?key="+wkey.decode () +sfl+sf2+sf3+sf4
response = urequests.get (url)
response.close ()
print ("Data sent to ThingSpeak:", lumi, temp, humi, rssi)
except Exception as e:
print ("Failed to send data:", e)

——— Receive LoRa Packet ———
ack_num=0
def onReceive (lora_modem, payload) :
global rssi; global chan; global wkey; global lumi; global temp; global humi; global precv;
global ack_num
rssi = lora_modem.packetRssi ()
if len(payload)==32:
precv=1
rssi = lora_modem.packetRssi ()
data=aes_decrypt (payload, AES_KEY)
chan, wkey, lumi, temp, humi = ustruct.unpack('ilés3f', data)
print ("Received encrypted LoRa packet with RSSI: "+str(rssi)) #, payload.decode())
print (chan, wkey, lumi, temp, humi)
display_sensors (8,9, lumi, temp, humi, 0)
ack_num=ack_num+l; print("ack:",ack_num)
if ack_num%60
rcycle=random.randint (5, 15)
control=0;
ack=ustruct.pack('3if', chan, control, rcycle,0.1)
enc_ack=aes_encrypt (ack, AES_KEY)
lora_modem.println(enc_ack) # sending ACK packet
print ("send short encrypted ack AES packet")
else: # sends long ACK encrypted packet every 60 packets
cntr=0; c_def=1; c_max=64; d_min=0.01;d_max=0.2;t_low=16.0; t_high=26.0
ack=ustruct.pack("4i4f", chan,cntr,c_def,c_max,d_min,d_max,t_low,t_high)
enc_ack=aes_encrypt (ack, AES_KEY)
lora_modem.println(enc_ack) # sending ACK packet
print ("send long encrypted ack AES packet")

lora_modem.receive ()

def main():
global rssi; global lumi; global temp; global humi; global precv # packet received
lora_modem.onReceive (onReceive)
lora_modem.receive ()
while True
if precv:
if connect_WiFi (SSID, PASS):
print ("WiFi connected")
send_data_to_thingspeak (lumi, temp, humi, rssi)
time.sleep (1)
disconnect_WiF4i ()
precv=0
time.sleep(15)

print ("waiting for packet")
time.sleep (1)

main ()

Low Power loT Architectures SmartComputerLab 6

Shell
entry 0x403cc710
Warning: SPI(-1,
SX version: 18
LoRa modem initialized with default parameters
Reading ts from internal EEPROM...
len: 20 ts_chan: 1234 ts_wkey: YOX31MOEDKOOJATK
Reading pow from internal EEPROM...
len: 24 , cdef: 1 , cmax: 64 , dmin: 0.01
ncycle:16
Luminosity: 42.84 lux
Temperature: 24.23595 C
Humidity: 49.33218 %
current: 24.23595 saved: 24.37537
0.01 0.2 0.1
data to SEND
Sending LoRa packet: L:42.84,T:24.24,H:49.33
LoRa encrypted packet sent successfully.
short ACK received

...) is deprecated, use SoftSPI(...) instead

dmax: 0.2 , tlow: 1

o
ng for
waiting for packet

waiting for packet

waiting for packet

waiting for packet

waiting for packet

Received encrypted LoRa packet with RSSI: -54
1234 b'YOX31MOEDKOQJATK' 55.08 24.37537 49.43137
ack: 2

send short encrypted ack AES packet
('192.168.45.202", '255.255.255.0',
WiFi connected

Data sent to ThingSpeak: 55.08 24.37537 49.43137 -54
Received encrypted LoRa packet with RSSI: -43

1234 b'YOX31MOEDKOQJATK' 42.84 24,23595 49.33218
ack: 3

send short encrypted ack AES packet

'192.168.45.115",

'192.168.45.115")

Fig 4.1 IDE terminals output : sender and receiver

Required modules (tools):
In sender (terminal) module:

from rtc_tools import *

from nvs_tools import *
from aes_tools import *

In receiver (gateway) module

from aes_tools import *
from wifi_tools import *

chan, cntr, c_par,d_par=ustruct.unpack('3if"', ack)

ack parameters - to confirm

chan,cntr, c_def,c_max,d_min,d_max,t_low,t_high=ustruct.unpack("4i4f", ack)

short ACK :

16-byte sl
long ACK :

32-byte chan

Fig 4.2

control

control

c_par

c_def

d_par

c_

max

d min [d_max | t_low | t_high

Formats of ACK packets send by the gateway to the terminal node.

Low Power loT Architectures

SmartComputerLab

@ Lock Vs @ 1

3 10 mi 10mi h
21000m
120mA
100m
8on
60m
0ma
0ma
ona
0002:1 00:02:40 00:03:00 00:03:15
853532 000.000 e é 000.000 853532
winoow seLect o seL
691.43ua 104.52ma 1:00.0m 41.49mc 28.19ma 104.52ma 1.276s 35.97mc
average max time charge average max time charge

Fig 4.3a PPK2 diagram: high_power stage with LoRa transmission phase (SF=7,SB=125KHz,CR=5) with
received ACK packet (no retransmission and no wait time-out); cost ~36mC.

@ Lockvaxis @ s 3 108

.
b e
5.62ma 104.89ma 1:00.0m 337.42mc 44.29ma 104.89ma 7.474s 331.05me
o

Fig 4.3b PPK2 diagram: high_power stage with LoRa transmission phase (SF=11,SB=125KHz,CR=8) with
no received ACK packet (retransmission and wait time-out - 2sec); cost ~331mC.

@ LockY-axis @ s 3s 10s mi 10m T
20ma
hert - o]
oma
wom
com
woma ‘
|
, |
00007 w0620 a00640 w0000 wworor
Sss000 %0000 %0000 G000 56000
o B
Mmu J”L i1 M. M\ J”LJ“LMM-IHI JUL J”LlJ”Lll | JlH.LA_LI_I_l
10.10ma 104.83ma 1:00.0m 0.61c 51.84ma 104.8Tma 3.038s 157.49me
avrsge e me cage | [. e - e

Fig 4.3c PPK2 diagram: high_power stage with LoRa transmission phase (SF=11,SB=125KHz,CR=8) with
received ACK packet (no retransmission and no wait time-out - 2sec); cost ~157.49mcC.

Low Power loT Architectures SmartComputerLab 8

4.1.3 Adding external EEPROM (AT24C32) for meta-parameters

To complete the provision of meta-parameters we can use an external EEPROM module ‘such as AT24C32,
pre-loaded with the initial meta-parameters.

This module may be initially connected (bus I12C) to the terminal node or may be connected permanently to the
gateway.

The following is the completed terminal node code:

import time, ustruct

from machine import I2C, Pin, freq, deepsleep
from sensors import sensors

from lora_init import lora_init

from rtc_tools import *

from nvs_tools import *

from aes_tools import *

from at24_to_nvs import *

Initialize LoRa communication

lora = lora_init()

aes_key="smartcomputerlab" # constant - 1 ECB mode
cdef=1; ts_chan=1234; ncycle=1
ACK_wait_time = 2 # ACK waiting time depends on the protocol and data rate

nvs_key="param"
led = Pin(3, Pin.OUT)

def onReceive (lora_modem, payload) :
global cdef; global ncycle

if len(payload)==16: # the payload: max_cycle, t_high, t_low
ack=aes_decrypt (payload, aes_key)
chan, cntr, c_par,d_par=ustruct.unpack('3if', ack) # ack parameters - to confirm
if chan==ts_chan:
print ("short ACK received") # no channel test
lora.sleep() # only for deepsleep

time.sleep(0.1)
deepsleep (ncycle*cdef*1000)

if len(payload)==32: # the payload: max_cycle, t_high, t_low
ack=aes_decrypt (payload, aes_key)
chan, cntr, c_def, c_max,d_min,d_max, t_low,t_high=ustruct.unpack("4i4f", ack) # ack parameters

- to confirm and save

if chan==ts_chan:
print ("long ACK parameters received") # no channel test
value=ustruct.pack ("2i4f",c_def,c_max,d_min,d_max,t_low,t_high)
write_nvs_power (nvs_key, value)
print ("new parameters written to nvs")

lora.sleep() # only for deepsleep

time.sleep(0.1)

ncycle, npos, nneg=rtc_load_param()

print (ncycle*cdef)

deepsleep (ncycle*cdef*1000)

def send_lora_data(ts_chan,ts_wkey,1,t,h):
try:
message = f"L:{1:.2f},T:{t:.2f},H:{h:.2f}"
print ("Sending LoRa packet:", message)
data = ustruct.pack('il6s3f',ts_chan,ts_wkey,1,t,h) # 32 bytes - short version
enc_data=aes_encrypt (data, aes_key)
lora.println(enc_data)
print ("LoRa encrypted packet sent successfully.")
except Exception as e:
print ("Failed to send LoRa packet:", e)
Main program

def main():
global cdef; global ts_chan; global ncycle
at24_to_nvs() # here we may load new meta-parameters if the AT24 is connected
freq(20000000)
print ("Reading ts from internal EEPROM...")
len, ts_rparam = read_nvs_ts (nvs_key)
if len:
ts_chan, ts_wkey=ustruct.unpack("il6s",ts_rparam)
print ("len:", len, "ts_chan:",ts_chan, "ts_wkey:",ts_wkey.decode())
print ("Reading pow from internal EEPROM...")
len, pow_rparam = read_nvs_power (nvs_key)

if len:
cdef, cmax,dmin, dmax, tlow, thigh=ustruct.unpack ("2i4£f", pow_rparam)
print ("len:",len,", cdef:",cdef,", cmax:",cmax,", dmin:",dmin,", dmax:",dmax,",

tlow:",tlow,", thigh:",thigh)

lora.onReceive (onReceive)
lora.receive()
while True:
ncycle, npos, nneg= rtc_load_param()
ssens= rtc_load_sensor(); sdelta= rtc_load_delta()
print ("ncycle:" +str(ncycle));
lumi, temp, humi = sensors(sda=8, scl=9)
print ("Luminosity:", lumi, "lux")

Low Power loT Architectures SmartComputerLab 9

print ("Temperature:", temp, "C")

print ("Humidity:", humi, "%")

print ("current: "+str(temp)+" saved: "+str(ssens)); # sensor is temperature
print (dmin, dmax, sdelta) ;

if abs(ssens-temp)>sdelta : # testing delta and thresholds

print ("data to SEND")
rtc_store_sensor (temp)
led.on()
if npos
if ncycle > 2:
ncycle= int (ncycle/2)
else:
if sdelta< dmax:
sdelta = sdelta*2 # new delta
rtc_store_delta(sdelta)

npos=npos+1l; nneg=0 # positive and negative counters
rtc_store_param(ncycle, npos, nneg)
send_lora_data(ts_chan, ts_wkey,lumi, temp, humi)
lora.receive()

time.sleep (ACK_wait_time)

print ("data packet sent, no ack received")
send_lora_data(ts_chan, ts_wkey,lumi, temp, humi)
lora.receive ()

time.sleep (ACK _wait_time)

print ("data packet re-sent, no ack received"); led.off()

elif temp>thigh or temp<tlow
ncycle=1; npos=0; nneg=0; rtc_store_param(ncycle, npos, nneg)
sdelta = dmin; rtc_store(sdelta)
send_lora_data(ts_chan, ts_wkey,lumi, temp, humi)
lora.receive()
time.sleep (ACK_wait_time)
print ("data packet sent, no ack received")
send_lora_data(ts_chan, ts_wkey,lumi, temp, humi)
lora.receive ()
time.sleep (ACK _wait_time)

print ("data packet re-sent, no ack received"); led.off()
else:
print ("data packet NOT sent")
if nneg
if ncycle < cmax:
ncycle = int (ncycle*2) # maximum factor 64 (64*15sec)
else

if sdelta> dmin:
sdelta = sdelta/2
rtc_store_delta(sdelta)

npos=0; nneg=nneg+l
rtc_store_param(ncycle, npos, nneg)
waiting for ACK frame
lora.sleep() # only for deepsleep
time.sleep(0.1)
print (ncycle*cdef)
print (sdelta)
deepsleep (ncycle*cdef*1000) # 10*1000 miliseconds

Run the main program
main ()

The above program imports at24_to_nvs.py module:

from nvs_tools import *
from at24_tools import *
from check_at24 import *

def at24_to_nvs():
nvs_key = "param"
if check_eeprom():
I2C_SCL = 9; I2C_SDA = 8
i2c = machine.I2C(0, scl=machine.Pin(I2C_SCL), sda=machine.Pin(I2C_SDA))
eeprom = AT24C32(i2c)
ts_addr = 0x00 # Starting address in EEPROM for ThingSpeak meta-parameters

pow_addr = 0x80 # 255 - starting address for power mata-parameters
print ("Reading from AT24C32...")
ts_rparam = eeprom.read_at24(ts_addr, 20) # len ts_rparam

pow_rparam = eeprom.read_at24 (pow_addr, 24) # len pow_rparam
print ("Writing to NVS...")
write_nvs_ts (nvs_key, ts_rparam)
write_nvs_power (nvs_key, pow_rparam)
else:
print ("no AT24CXX module found..")
print ("Reading from NVS...")
len,ts_rparam = read_nvs_ts (nvs_key)

Low Power loT Architectures SmartComputerLab 10

if len:

chan, wkey=ustruct .unpack ("il6s",ts_rparam)

print ("len:",len, "ts_chan:",chan, "ts_wkey:", wkey.decode())
len,pow_rparam = read_nvs_power (nvs_key)

if len:
cdef, cmax,dmin, dmax, tlow, thigh=ustruct.unpack ("2i4f", pow_rparam)
print("len:",len,", cdef:",cdef,", cmax:",cmax,", dmin:",dmin,", dmax:",dmax,",

tlow:",tlow,", thigh:",thigh)

As we see the at24_to-nvs.py module needs at24_tools.py and check_at24.py modules

at24_tools.py
import machine
import time
import ustruct

class AT24C32:
def _ init__ (self, i2c, address=0x50):
self.i2c = i2c
self.address = address
self._capacity = 4096 # AT24C32 has 4KB capacity

def write_at24 (self, addr, buff):

if not isinstance(buff, (bytes, bytearray)):
raise ValueError ("Buffer must be of type 'bytes' or 'bytearray'")

if addr < 0 or addr + len(buff) > self._capacity:
raise ValueError ("Address out of range")

for i in range(len(buff)):
self.i2c.writeto(self.address, bytes([addr >> 8, addr & OxFF, buff[i]]))
time.sleep(0.01) # EEPROM write delay
addr += 1

def read_at24 (self, addr, length):
if addr < 0 or addr + length > self._capacity:
raise ValueError ("Address out of range")
self.i2c.writeto(self.address, bytes([addr >> 8, addr & OxFF]))
return self.i2c.readfrom(self.address, length)

def capacity(self):
return self._capacity

from machine import Pin, I2C
import time

Initialize I2C (GPIO21 = SDA, GPIO22 = SCL)
i2c = I2C(0, scl=Pin(9), sda=Pin(8), £freq=100000)

Common I2C address range for AT24CXX EEPROMs
EEPROM_ADDRESSES = [0x50 + i for i in range(8)] # 0x50 - 0x57

def check_eeprom() :
print ("Scanning I2C bus for AT24CXX EEPROM...")
devices = i2c.scan()
if not devices:
print ("No I2C devices found.")
return False

found = False
for addr in EEPROM_ADDRESSES:
if addr in devices:

try:
Try reading 1 byte from address 0x00
i2c.writeto(addr, b'\x00') # Set memory pointer to 0x00
data = i2c.readfrom(addr, 1) # Read 1 byte

print (£"EEPROM found at address Ox{addr:02X}. Data at 0x00: {data[0]:02X}")
found = True

except Exception as e:
print ("Device responded but did not behave like EEPROM.")

if not found:
print ("No AT24CXX EEPROM found on the I2C bus.")
return found

Low Power loT Architectures SmartComputerLab

	IoT Lab 4
	Low Power Adaptive LoRa protocols
	4.1 Remote Terminal – sender
	4.1.1 The completed code for terminal
	4.1.2 The completed code for receiver - gateway
	Required modules (tools):
	4.1.3 Adding external EEPROM (AT24C32) for meta-parameters

