
IoT Lab 3

Long distance communication with Remote Terminals over
LoRa radio links

3.1 Essential Features of LoRa Communication Technology
LoRa (Long Range) is a wireless communication technology designed for long-range, low-power, and low-data-
rate applications, often used in Internet of Things (IoT) networks.

It is based on Chirp Spread Spectrum (CSS) modulation and offers several unique features that make it ideal
for specific use cases.

1. Long Range Communication
• LoRa supports communication over long distances, ranging from 2 km in urban areas to 15–20 km in

rural areas, depending on environmental conditions and antenna setup.
• This long-range capability makes it suitable for applications like agriculture, smart cities, and remote

monitoring.

2. Low Power Consumption
• LoRa devices are optimized for low-power operation, enabling battery-powered sensors to last for

years (often 10+ years) on a single charge.
• This makes it ideal for applications where power supply is limited or replacement is challenging.

3. Wide Area Networking
• LoRa operates on unlicensed ISM bands (e.g., 433 MHz, 868 MHz, 915 MHz), which allows it to cover

wide areas without requiring costly licensed spectrum.
• LoRaWAN (a higher-layer protocol) is often used for network management in such setups.

4. Robustness to Interference
• LoRa uses chirp spread spectrum modulation, which spreads data over a wide bandwidth, making it

highly resistant to noise and interference.
• It can maintain communication even in environments with high RF noise.

5. Scalability
• LoRa networks can support thousands of devices, making it well-suited for IoT applications where

multiple sensors and actuators need to operate within a single network.

6. Low Data Rate
• LoRa is designed for low-data-rate applications, with typical throughput ranging from 0.3 kbps to 50

kbps.
• Suitable for transmitting small packets of data, such as sensor readings, but not for high-bandwidth

tasks like video streaming.

7. Bidirectional Communication
• Supports both uplink (sensor-to-gateway) and downlink (gateway-to-sensor) communication.
• Allows devices to receive commands, firmware updates, or acknowledgments.

8. Multi-Gateway Support
• LoRa devices can communicate with multiple gateways simultaneously, ensuring reliable data

transmission even in challenging environments.

Low Power IoT Architectures SmartComputerLab 1

9. Secure Communication
• Offers built-in security features, such as AES-128 encryption, to protect data from interception or

tampering.
• Essential for applications in industries like healthcare and finance.

10. License-Free Operation
• Operates in license-free sub-GHz ISM bands (e.g., 433 MHz, 868 MHz, 915 MHz), eliminating the need

for costly spectrum licensing.
•

11. Flexible Deployment Models
• LoRa can be used in both private and public networks.
• Public networks are ideal for smart cities, while private networks are better for industries and agriculture.

Key Use Cases for LoRa
1. Smart Agriculture:

• Soil moisture sensors, livestock tracking, weather stations.
2. Smart Cities:

• Street lighting control, parking sensors, air quality monitoring.
3. Industrial IoT:

• Predictive maintenance, asset tracking, energy management.
4. Environmental Monitoring:

• River levels, forest fire detection, wildlife monitoring.
5. Healthcare:

• Remote patient monitoring and wearable devices.

Comparison with Other Technologies

Feature LoRa Wi-Fi Bluetooth Cellular (LTE/5G)

Range Long (up to 20 km) Short (< 100 m) Short (< 10 m) Moderate to Long

Power Consumption Very Low High Low High

Data Rate Low High Moderate High

Deployment Cost Low Moderate Low High

Network Size High Low Low High

Advantages of LoRa

1. Extensive Coverage: Excellent for remote areas and large-scale deployments.
2. Energy Efficiency: Ideal for battery-powered IoT devices.
3. Cost-Effective: Uses free ISM bands and requires minimal infrastructure.
4. Scalability: Suitable for networks with thousands of devices.

Limitations of LoRa

1. Low Throughput: Not suitable for high-data-rate applications.
2. Latency: Not designed for real-time communication.
3. Interference in Dense Networks: Performance can degrade with too many devices in the same area.

Low Power IoT Architectures SmartComputerLab 2

Fig 3.1 Sending sensor data from Remote Terminal via LoRa-WiFi Gateway to ThingSpeak server. The IoT
socket parameters decomposition: channel in Remote Terminal, @IP and port number in LoRa-WiFi
Gateway.

3.1 Simple LoRa sender and receiver nodes
The following examples present the introduction to developing LoRa based communication on our DevKits that
integrate LoRa -SX127x modems.
Below we have a very simple example including one sender and one receiver that must operate on the same
frequency – freq (ex. 868MHz), with the same spreading factor -sf (ex. 7) , the same bandwidth – bw (ex.
125KHz), and the same coding ratio – cr (ex. 5).

Fig. 3.2 Simple IoT architecture with sender-receiver nodes and LoRa radio link

To prepare the LoRa modems we have to provide initial configuration code required to connect and activate the
modems.

Low Power IoT Architectures SmartComputerLab 3

3.1.1 LoRa modem initialization parameters and function
The following code contains configuration functions. It is called lora_init.py. When we run this code we
“connect” ,via SPI bus, our ESP32C3 SoC to the external modem and we send the initialization commands to
the modem.

Fig 3.3 IoT DevKit with HT ESP32C3 board and LoRa sx1276 modem on RFM95 module with SPI bus
(sck,miso,mosi) and control lines: DIO0 (dio_0), NSS (ss), RESET (reset).

#lora_init.py
from machine import Pin, SPI
import time
import sx127x # SX127x LoRa driver (ensure the library is installed)
import esp32

--- LoRa Pins and SPI Bus Setup --- HT
lora_pins = {
 'dio_0': 2, # DIO0 pin for interrupt
 'ss': 4, # Slave Select (SS)
 'reset': 10, # Reset pin
 'sck': 6, # SPI Clock pin
 'miso': 5, # SPI MISO pin
 'mosi': 7 # SPI MOSI pin
}
SPI bus configuration for SX1276
lora_spi = SPI(
 baudrate=10000000, # Set baudrate to 10 MHz
 polarity=0, # Clock polarity (CPOL)
 phase=0, # Clock phase (CPHA)
 bits=8, # 8 bits per transfer
 firstbit=SPI.MSB, # MSB first
 sck=Pin(lora_pins['sck'], Pin.OUT, Pin.PULL_DOWN), # SCK (clock)
 mosi=Pin(lora_pins['mosi'], Pin.OUT, Pin.PULL_UP), # MOSI (Master Out Slave In)
 miso=Pin(lora_pins['miso'], Pin.IN, Pin.PULL_UP), # MISO (Master In Slave Out)
)
LoRa configuration with default parameters
lora_default = {
 'frequency': 868E6, # Frequency for Europe (868 MHz ISM band)
 'tx_power_level': 14, # Transmission power level (14 dBm)
 'signal_bandwidth': 125E3, # Signal bandwidth (125 kHz)
 'spreading_factor': 7, # Spreading factor (7)
 'coding_rate': 5, # Coding rate (4/5)
 'preamble_length': 8, # Preamble length (8)
 'implicit_header': False, # Explicit header mode
 'sync_word': 0x12, # LoRa sync word
 'enable_crc': True # Enable CRC for error detection
}

Low Power IoT Architectures SmartComputerLab 4

--- SX1276 LoRa Driver Initialization ---
def lora_init():
 # Reset the SX1276
 reset_pin = Pin(lora_pins['reset'], Pin.OUT)
 reset_pin.value(0)
 time.sleep(0.01) # Short delay
 reset_pin.value(1)
 # Initialize the SX1276 LoRa driver with default parameters
 lora = sx127x.SX127x(spi=lora_spi, pins=lora_pins, parameters=lora_default)
 # Confirm initialization
 print("LoRa modem initialized with default parameters.")
 return lora

#lora_init() # only for test
--
MPY: soft reboot
SX version: 18
LoRa modem initialized with default parameters.

To do:
Attention: Correct initialization of the modem/module prints: SX version: 18
Analyze the above code , distinguish 3 parts: connection, default radio link parameters (may be
modified), and the initial initialization run with lora_init() function.

Low Power IoT Architectures SmartComputerLab 5

3.1.2 LoRa sender - main_send_lora.py and recv ACK
In the following example we send data packets over LoRa link. The format of the packets is the same as in the
already presented ESP-NOW sender nodes (see Lab 4). The data packet contains 32 bytes.

Fig. 3.4 Structure of LoRa packets carrying the channel number, write key/topic, and sensor values.

Note that the code below integrates both sending and receiving functions. The receiving function is used to
capture the return acknowledgment (ACK) packet. This return packet does not carry sensor data; instead, it
confirms that the data packet has been successfully received and may also include control information, which
will be examined in the following labs.

Reception of the return packet is handled through a callback function that operates independently of the main
operational loop implemented in the main() function. This callback is triggered by an interrupt signaling the
arrival of a new LoRa packet in the modem’s input buffer.
This interrupt-driven reception mechanism ensures timely handling of incoming packets without blocking the
main application flow.

--
import time, ustruct
from machine import I2C, Pin, deepsleep
from sensors import sensors
from lora_init import lora_init
Initialize LoRa communication
lora = lora_init()

def onReceive(lora_modem,payload):
 #print("Waiting for LoRa packets...")
 ACK=payload.decode()
 print("Received LoRa packet:"+str(ACK)) #, payload.decode())
Function to send sensor data over LoRa
def send_lora_data(l, t, h):
 try:
 # Create the message with temperature, humidity, and luminosity
 message = f"L:{l:.2f},T:{t:.2f},H:{h:.2f}"
 print("Sending LoRa packet:", message)
 # prepare data packet with bytes
 data = ustruct.pack('i16s3f', 1254,'smartcomputerlab',l,t,h)
 # Convert message to bytes
 # lora.println(bytes(message, 'utf-8'))
 lora.println(data)
 print("LoRa packet sent successfully.")
 except Exception as e:
 print("Failed to send LoRa packet:", e)
Main program
ACK_wait_time = 2 # ACK waiting time depends on the protocol and data rate
def main():
 lora.onReceive(onReceive)
 lora.receive()
 while True:
 # Capture sensor data
 lumi, temp, humi = sensors(sda=8, scl=9)
 print("Luminosity:", lumi, "lux")
 print("Temperature:", temp, "C"); print("Humidity:", humi, "%")
 # Send sensor data over LoRa
 send_lora_data(lumi, temp, humi)
 lora.receive()
 time.sleep(ACK_wait_time) # waiting for ACK frame
 #lora.sleep() # only for deepsleep
 #deepsleep(10*1000) # 10*1000 miliseconds
Run the main program
main()
--

Low Power IoT Architectures SmartComputerLab 6

3.1.3 LoRa receiver – and sender ACK
Below we have corresponding receiver node that displays the received data on its OLED screen. It responds with
a simple ACK packet (message) to confirm the reception of the data packet.

from machine import Pin, I2C, SPI
import ustruct, time
from lora_init import *
from sensors_display import *
lora_modem = lora_init()
--- Receive LoRa Packet ---
def onReceive(lora_modem,payload):
 rssi = lora_modem.packetRssi()
 chan, wkey, lumi, temp, humi = ustruct.unpack('i16s3f', payload)
 print("Received LoRa packet RSSI:"+str(rssi)); print(chan,wkey,lumi,temp,humi)
 sensors_display(8,9,lumi,temp,humi,0)
 lora_modem.println("ACK_packet") # sending ACK packet
 lora_modem.receive()

def main():
 lora_modem.onReceive(onReceive)
 lora_modem.receive()
 while True:
 time.sleep(2)
 print("in the loop")

main()

from machine import Pin, I2C
from ssd1306 import SSD1306_I2C
import time

def sensors_display(sda, scl, luminosity, temperature, humidity, duration):
 i2c = I2C(scl=Pin(scl), sda=Pin(sda), freq=400000)
 oled = SSD1306_I2C(128, 64, i2c)
 oled.fill(0)
 oled.text("Sensor readings", 0, 0)
 oled.text("Lux: {:.2f}".format(luminosity), 0, 16)
 oled.text("Temp: {:.2f}".format(temperature), 0, 32)
 oled.text("Humi: {:.2f}".format(humidity), 0, 48)
 oled.show()
 if duration!=0:
 time.sleep(duration)
 oled.poweroff()

Fig. 3.5 LoRa sender and receiver nodes; note the use of ACK packet
--

To do
Run the Remote Terminal with deepsleep mode for low_power stage

Low Power IoT Architectures SmartComputerLab 7

3.2 Sending/receiving formatted data/ACK packets with AES encryption
The following example is a minor modification of the previous one; however, it introduces the use of power-
control parameters delivered through the ACK packet.
The formatted ACK packet contains four fields:

1. The channel number (topic), which also serves as the terminal identifier,
2. The cycle duration (in seconds),
3. The delta value, indicating the minimum difference between the last transmitted sensor reading and

the current one (e.g., temperature),
4. The kpack value, which specifies the maximum number of consecutive measurement cycles allowed

without transmitting a data packet.

All of these parameters are used to adaptively reduce the average current consumption of the remote
terminal by controlling its transmission frequency and sensitivity.
These formatted ACK packets are encrypted using the AES encryption scheme, ensuring secure delivery of
control information.

AES
AES (Advanced Encryption Standard) is a symmetric encryption algorithm widely used for secure data
transmission. It was established by the U.S. National Institute of Standards and Technology (NIST) in 2001 and
is recognized for its efficiency and high level of security. AES uses the same key for both encryption and
decryption, making it a symmetric encryption method.

Key features of AES include:
1. Block Cipher: It encrypts data in fixed-size blocks (128 bits).
2. Key Sizes: Supports key sizes of 128, 192, or 256 bits, providing varying levels of security.
3. Efficient and Fast: Designed to perform efficiently in both hardware and software environments.
4. Widely Adopted: Trusted by industries, governments, and organizations for secure communications.

3.2.1 Sending data packets and receiving ACK packets (AES encrypted)
We start this code with the introduction of AES functions; they are prepared in aes_tools.py module as
follows:

3.2.1.1 AES module – aes_tools.py

aes_tools.py
import ucryptolib

AES encryption function using ucryptolib
def aes_encrypt(data,aes_key):
 cipher = ucryptolib.aes(aes_key, 1) # 1 = ECB mode
 encrypted = cipher.encrypt(data) # data size must be multiple 16 bytes
 return encrypted
AES decryption function
def aes_decrypt(encrypted_data,aes_key):
 cipher = ucryptolib.aes(aes_key, 1) # 1 = ECB mode
 data = cipher.decrypt(encrypted_data) # data size must be multiple 16 bytes
 return data
--

3.2.1.2 The sender module (with AES) code

import time, ustruct
from machine import I2C, Pin, deepsleep
from sensors import sensors
from lora_init import lora_init
from aes_tools import *
AES_KEY = b'smartcomputerlab' # Replace with your actual 16-byte AES key
Initialize LoRa communication
lora = lora_init()
chan = 1234

def onReceive(lora_modem,payload):
 if len(payload)==16:
 ack=aes_decrypt(payload,AES_KEY)
 rchan, cycle, delta, kpack = ustruct.unpack('2ifi', ack)

Low Power IoT Architectures SmartComputerLab 8

 print("encrypted ACK received");
 if chan==rchan :
 print(cycle,delta,kpack)

Function to send sensor data over LoRa
def send_lora_data(l, t, h):
 try:
 # Create the message with temperature, humidity, and luminosity
 message = f"L:{l:.2f},T:{t:.2f},H:{h:.2f}"
 print("Sending LoRa packet:", message)
 # prepare data packet with bytes
 data = ustruct.pack('i16s3f', chan,'smartcomputerlab',l,t,h)
 enc_data=aes_encrypt(data,AES_KEY)
 # Convert message to bytes
 # lora.println(bytes(message, 'utf-8'))
 lora.println(enc_data)
 print("LoRa encrypted packet sent successfully.")
 except Exception as e:
 print("Failed to send LoRa packet:", e)

Main program
ACK_wait_time = 2 # ACK waiting time depends on the protocol and data rate
def main():
 lora.onReceive(onReceive)
 lora.receive()
 while True:
 # Capture sensor data
 lumi, temp, humi = sensors(sda=8, scl=9)
 print("Luminosity:", lumi, "lux")
 print("Temperature:", temp, "C")
 print("Humidity:", humi, "%")
 # Send sensor data over LoRa
 send_lora_data(lumi, temp, humi)
 lora.receive()
 time.sleep(ACK_wait_time) # waiting for ACK frame
 #lora.sleep() # only for deepsleep
 #deepsleep(10*1000) # 10*1000 miliseconds

Run the main program
main()

3.2.1.3 Receiving data packets and sending ACK packets (AES encrypted)
--

from machine import Pin, I2C, SPI
import ustruct
from lora_init import *
from sensors_display import *
from aes_tools import *
import time

AES_KEY = b'smartcomputerlab' # Replace with your actual 16-byte AES key
Initialize LoRa modem
lora_modem = lora_init()

--- Receive LoRa Packet ---
def onReceive(lora_modem,payload):
 rssi = lora_modem.packetRssi()
 if len(payload)==32:
 rssi = lora_modem.packetRssi()
 data=aes_decrypt(payload,AES_KEY)
 chan, wkey, temp, humi, lumi = ustruct.unpack('i16s3f', data)
 print("Received encrypted LoRa packet with RSSI: "+str(rssi)) #, payload.decode())
 print(chan,wkey,lumi,temp,humi)
 sensors_display(8,9,lumi,temp,humi,0)
 ack=ustruct.pack('2ifi',chan,10,0.01,10) # chan, cycle, delta, kpack
 enc_ack=aes_encrypt(ack,AES_KEY)
 lora_modem.println(enc_ack) # sending ACK packet
 print("send encrypted ack AES packet")
 lora_modem.receive()

def main():
 lora_modem.onReceive(onReceive)
 lora_modem.receive()
 while True:
 time.sleep(2)
 print("in the loop")

main()

Low Power IoT Architectures SmartComputerLab 9

Fig. 3.6 LoRa sender and receiver nodes with the use of ACK packets and AES encryption

Low Power IoT Architectures SmartComputerLab 10

3.3 Building LoRa-WiFi gateways
Now we have operational link with data and ACK packets so ,at the receiver side, we can add the relay
transmission via WiFi connection to MQTT broker or to ThingSpeak server.

Fig 3.7 IoT architecture with Remote Terminal and LoRa-WiFi gateway to MQTT broker or/and ThingSpeak
server.

3.3.1 LoRa-WiFi gateway to MQTT broker
Let us start with terminal node that sends an encrypted data packet every n seconds and first waits for the
corresponding encrypted ack packet during ACK_wait_time. Then after few seconds the node sends next
data packet.

Fig 3.8 Simple sending (data) – receiving (ack) cycle with high_power wait time

3.3.1.1 LoRa sender node
import time, ustruct
from machine import I2C, Pin, deepsleep
from sensors import sensors
from lora_init import lora_init
from aes_tools import *
AES_KEY = b'smartcomputerlab' # Replace with your actual 16-byte AES key
Initialize LoRa communication
lora = lora_init()
chan = 1234
led=Pin(3)
cycle=10

def onReceive(lora_modem,payload):
 global cycle
 if len(payload)==16:

Low Power IoT Architectures SmartComputerLab 11

 ack=aes_decrypt(payload,AES_KEY)
 rchan, cycle, delta, kpack = ustruct.unpack('2ifi', ack)
 print("encrypted ACK received");
 if chan==rchan :
 print(cycle,delta,kpack)

Function to send sensor data over LoRa
def send_lora_data(l, t, h):
 try:
 # Create the message with temperature, humidity, and luminosity
 message = f"L:{l:.2f},T:{t:.2f},H:{h:.2f}"
 print("Sending LoRa packet:", message)
 # prepare data packet with bytes
 data = ustruct.pack('i16s3f', chan,'smartcomputerlab',l,t,h)
 enc_data=aes_encrypt(data,AES_KEY)
 lora.println(enc_data)
 print("LoRa encrypted packet sent successfully.")
 except Exception as e:
 print("Failed to send LoRa packet:", e)

Main program
ACK_wait_time = 2 # ACK waiting time depends on the protocol and data rate
def main():
 lora.onReceive(onReceive)
 lora.receive()
 led.off()
 while True:
 led.on()
 lumi, temp, humi = sensors(sda=8, scl=9)
 print("Luminosity:", lumi, "lux")
 print("Temperature:", temp, "C")
 print("Humidity:", humi, "%")
 # Send sensor data over LoRa
 send_lora_data(lumi, temp, humi)
 lora.receive()
 time.sleep(ACK_wait_time) # waiting for ACK frame
 led.off()
 print(cycle)
 if cycle<600 : # to high value
 time.sleep(cycle)
 else:
 time.sleep(15)
 #lora.sleep() # only for deepsleep
 #deepsleep(10*1000) # 10*1000 miliseconds

Run the main program
main()

--

3.3.1.2 LoRa-WiFi to MQTT gateway node
from machine import Pin, I2C, SPI
import ustruct, random, ubinascii
from lora_init import *
from sensors_display import *
from aes_tools import *
import machine,time
from wifi_tools import *
from umqtt.simple import MQTTClient
SSID = 'Bbox-9ECEBF79'
PASS = '54347A3EA6A1D6C36EF6A9E5156F7D'
MQTT broker details
MQTT_BROKER = "broker.emqx.io" # Replace with your broker address
MQTT_PORT = 1883
MQTT_CLIENT_ID = ubinascii.hexlify(machine.unique_id()) # Unique client ID
MQTT_TOPIC = 'esp32/sensor_data' # Replace with your topic
Initialize MQTT client
client = MQTTClient(MQTT_CLIENT_ID, MQTT_BROKER, port=MQTT_PORT)
AES_KEY = b'smartcomputerlab' # Replace with your actual 16-byte AES key
lora_modem = lora_init()

def connect_mqtt():
 """Connect to the MQTT broker."""
 try:
 client.connect()
 print("Connected to MQTT broker.")
 except Exception as e:
 print("Failed to connect to MQTT broker:", e)

def disconnect_mqtt():
 client.disconnect()
 print("Disconnected from MQTT broker.")

def publish_sensor_data(lumi, temp, humi):
 """Publish sensor data to MQTT broker."""
 if lumi is not None and temp is not None and humi is not None:
 message = {

Low Power IoT Architectures SmartComputerLab 12

 "lumi": lumi,
 "temp": temp,
 "humi": humi
 }
 client.publish(MQTT_TOPIC, str(message))
 print("Published:", message)
 else:
 print("Failed to publish sensor data.")
--- Receive LoRa Packet ---
def onReceive(lora_modem,payload):
 rssi = lora_modem.packetRssi()
 if len(payload)==32:
 rssi = lora_modem.packetRssi()
 data=aes_decrypt(payload,AES_KEY)
 chan, wkey, lumi, temp, humi = ustruct.unpack('i16s3f', data)
 print("Received encrypted LoRa packet with RSSI: "+str(rssi)) #, payload.decode())
 print(chan,wkey,lumi,temp,humi)
 sensors_display(8,9,lumi,temp,humi,0)
 connect_mqtt()
 publish_sensor_data(lumi, temp, humi)
 disconnect_mqtt()
 rcycle=random.randint(5,15)
 ack=ustruct.pack('2ifi',chan,rcycle,0.01,10) # chan,cycle, delta, kpack
 enc_ack=aes_encrypt(ack,AES_KEY)
 lora_modem.println(enc_ack) # sending ACK packet
 print("send encrypted ack AES packet")
 lora_modem.receive()

def main():
 lora_modem.onReceive(onReceive)
 lora_modem.receive()
 if connect_WiFi(SSID,PASS):
 print("WiFi connected")
 while True:
 time.sleep(2)
 print("in the loop")

main()

Fig 3.9 LoRa sender and receiver gateway (LoRa-WiFi) to MQTT broker.

To do
Analyze the code and run it with your credentials: WiFi and MQTT broker.
You can also run mosquitto_sub program on your PC/SBC and observe the published messages.
--
bako@bako-U820:~$ mosquitto_sub -h broker.emqx.io -t esp32/sensor_data
{'temp': 24.43973, 'humi': 58.62479, 'lumi': 220.32}
{'temp': 24.43973, 'humi': 58.40353, 'lumi': 220.32}
{'temp': 24.40755, 'humi': 58.43405, 'lumi': 220.32}

Low Power IoT Architectures SmartComputerLab 13

3.3.3 LoRa-WiFi gateway to ThingSpeak server

from machine import Pin, I2C, SPI
import ustruct, random, ubinascii, urequests
from lora_init import *
from display_sensors import *
from aes_tools import *
import machine,time
from wifi_tools import *

WiFi credentials
SSID = 'Bbox-9ECEBF79'
PASS = '54347A3EA6A1D6C36EF6A9E5156F7D'

AES_KEY = b'smartcomputerlab' # Replace with your actual 16-byte AES key
Initialize LoRa modem
lora_modem = lora_init()
rssi=0; chan=0; wkey=""; lumi=0.0; temp=0.0; humi=0.0

 # Function to send data to ThingSpeak
def send_data_to_thingspeak(lumi, temp, humi, rssi):
 try:
 sf1="&field1="+str(lumi); sf2="&field2="+str(temp); sf3="&field3="+str(humi);
sf4="&field4="+str(rssi)
 url = "https://thingspeak.com/update?key=YOX31M0EDKO0JATK"+sf1+sf2+sf3+sf4
 response = urequests.get(url)
 response.close()
 print("Data sent to ThingSpeak:", lumi, temp, humi, rssi)
 except Exception as e:
 print("Failed to send data:", e)

--- Receive LoRa Packet ---
def onReceive(lora_modem,payload):
 global rssi; global chan; global wkey; global lumi; global temp; global humi
 rssi = lora_modem.packetRssi()
 if len(payload)==32:
 rssi = lora_modem.packetRssi()
 data=aes_decrypt(payload,AES_KEY)
 chan, wkey, lumi, temp, humi = ustruct.unpack('i16s3f', data)
 print("Received encrypted LoRa packet with RSSI: "+str(rssi)) #, payload.decode())
 print(chan,wkey,lumi,temp,humi)
 display_sensors(8,9,lumi,temp,humi,0)
 rcycle=random.randint(5,15)
 ack=ustruct.pack('2ifi',chan,rcycle,0.01,10) # chan,cycle, delta, kpack
 enc_ack=aes_encrypt(ack,AES_KEY)
 lora_modem.println(enc_ack) # sending ACK packet
 print("send encrypted ack AES packet")
 lora_modem.receive()

def main():
 global rssi; global lumi; global temp; global humi
 lora_modem.onReceive(onReceive)
 lora_modem.receive()
 while True:
 if connect_WiFi(SSID, PASS):
 print("WiFi connected")
 send_data_to_thingspeak(lumi, temp, humi, rssi)
 time.sleep(1)
 disconnect_WiFi()
 time.sleep(15)

main()

--

Low Power IoT Architectures SmartComputerLab 14

Fig 3.10 LoRa sender and receiver gateway (LoRa-WiFi) to ThingSpeak server.
--

To do
Test the sender and gateway with your credentials for WiFi and ThingSpeak

Fig 3.11 ThingSpeak diagrams showing the impact of delta parameters on the sending sequence (stream)

Low Power IoT Architectures SmartComputerLab 15

	IoT Lab 3
	Long distance communication with Remote Terminals over LoRa radio links
	3.1 Essential Features of LoRa Communication Technology
	Key Use Cases for LoRa
	Comparison with Other Technologies
	Advantages of LoRa
	Limitations of LoRa

	3.1 Simple LoRa sender and receiver nodes
	3.1.1 LoRa modem initialization parameters and function
	3.1.2 LoRa sender - main_send_lora.py and recv ACK
	3.1.3 LoRa receiver – and sender ACK

	3.2 Sending/receiving formatted data/ACK packets with AES encryption
	AES
	3.2.1 Sending data packets and receiving ACK packets (AES encrypted)
	3.2.1.1 AES module – aes_tools.py
	3.2.1.2 The sender module (with AES) code
	3.2.1.3 Receiving data packets and sending ACK packets (AES encrypted)

	3.3 Building LoRa-WiFi gateways
	3.3.1 LoRa-WiFi gateway to MQTT broker
	3.3.1.1 LoRa sender node
	3.3.1.2 LoRa-WiFi to MQTT gateway node

	3.3.3 LoRa-WiFi gateway to ThingSpeak server

