loT Lab 3

Long distance communication with Remote Terminals over
LoRa radio links

3.1 Essential Features of LoRa Communication Technology

LoRa (Long Range) is a wireless communication technology designed for long-range, low-power, and low-data-
rate applications, often used in Internet of Things (loT) networks.

It is based on Chirp Spread Spectrum (CSS) modulation and offers several unique features that make it ideal
for specific use cases.

1. Long Range Communication
» LoRa supports communication over long distances, ranging from 2 km in urban areas to 15-20 km in
rural areas, depending on environmental conditions and antenna setup.
» This long-range capability makes it suitable for applications like agriculture, smart cities, and remote
monitoring.

2. Low Power Consumption
» LoRa devices are optimized for low-power operation, enabling battery-powered sensors to last for
years (often 10+ years) on a single charge.
» This makes it ideal for applications where power supply is limited or replacement is challenging.

3. Wide Area Networking
* LoRa operates on unlicensed ISM bands (e.g., 433 MHz, 868 MHz, 915 MHz), which allows it to cover
wide areas without requiring costly licensed spectrum.
* LoRaWAN (a higher-layer protocol) is often used for network management in such setups.

4. Robustness to Interference
» LoRa uses chirp spread spectrum modulation, which spreads data over a wide bandwidth, making it
highly resistant to noise and interference.
» It can maintain communication even in environments with high RF noise.

5. Scalability
» LoRa networks can support thousands of devices, making it well-suited for loT applications where
multiple sensors and actuators need to operate within a single network.

6. Low Data Rate
» LoRa is designed for low-data-rate applications, with typical throughput ranging from 0.3 kbps to 50
kbps.
» Suitable for transmitting small packets of data, such as sensor readings, but not for high-bandwidth
tasks like video streaming.

7. Bidirectional Communication
» Supports both uplink (sensor-to-gateway) and downlink (gateway-to-sensor) communication.
» Allows devices to receive commands, firmware updates, or acknowledgments.

8. Multi-Gateway Support

» LoRa devices can communicate with multiple gateways simultaneously, ensuring reliable data
transmission even in challenging environments.

Low Power loT Architectures SmartComputerLab 1



9. Secure Communication
» Offers built-in security features, such as AES-128 encryption, to protect data from interception or
tampering.
+ Essential for applications in industries like healthcare and finance.

10. License-Free Operation

» Operates in license-free sub-GHz ISM bands (e.g., 433 MHz, 868 MHz, 915 MHz), eliminating the need
for costly spectrum licensing.

11. Flexible Deployment Models
* LoRa can be used in both private and public networks.
» Public networks are ideal for smart cities, while private networks are better for industries and agriculture.

Key Use Cases for LoRa
. Smart Agriculture:

» Soil moisture sensors, livestock tracking, weather stations.
2. Smart Cities:

» Street lighting control, parking sensors, air quality monitoring.
3. Industrial loT:

» Predictive maintenance, asset tracking, energy management.
4. Environmental Monitoring:

» River levels, forest fire detection, wildlife monitoring.
5. Healthcare:

» Remote patient monitoring and wearable devices.

—_

Comparison with Other Technologies

Feature LoRa Wi-Fi Bluetooth Cellular (LTE/5G)
Range Long (up to 20 km) Short (< 100 m) Short (<10 m)  Moderate to Long
Power Consumption Very Low High Low High
Data Rate Low High Moderate High
Deployment Cost Low Moderate Low High
Network Size High Low Low High

Advantages of LoRa

1. Extensive Coverage: Excellent for remote areas and large-scale deployments.
2. Energy Efficiency: Ideal for battery-powered loT devices.

3. Cost-Effective: Uses free ISM bands and requires minimal infrastructure.

4. Scalability: Suitable for networks with thousands of devices.

Limitations of LoRa

1. Low Throughput: Not suitable for high-data-rate applications.
2. Latency: Not designed for real-time communication.
3. Interference in Dense Networks: Performance can degrade with too many devices in the same area.

Low Power loT Architectures SmartComputerLab 2



DT - direct terminal
sensors

»
>
CT - close terminal

sensors WiFi - Router

» -WiFi iFi
N G

RT - remote terminal _—
sensors LoRa/WiFi - Gateway

>
-

Thing in Cloud
(channel)

WiFi

€ == >

10T socket

Fig 3.1 Sending sensor data from Remote Terminal via LoRa-WiFi Gateway to ThingSpeak server. The loT
socket parameters decomposition: channel in Remote Terminal, @IP and port number in LoRa-WiFi
Gateway.

3.1 Simple LoRa sender and receiver nodes

The following examples present the introduction to developing LoRa based communication on our DevKits that
integrate LoRa -SX127x modems.

Below we have a very simple example including one sender and one receiver that must operate on the same
frequency - £req (ex. 868MHz), with the same spreading factor -s£ (ex. 7) , the same bandwidth - bw (ex.
125KHz), and the same coding ratio - cr (ex. 5).

SENSOrs

LoRa - sender LoRa - receiver

radio parameters: freq, sf, sb, cr

Fig. 3.2 Simple loT architecture with sender-receiver nodes and LoRa radio link

To prepare the LoRa modems we have to provide initial configuration code required to connect and activate the
modems.

Low Power loT Architectures SmartComputerLab 3



3.1.1 LoRa modem initialization parameters and function

The following code contains configuration functions. Itis called lora_init.py. When we run this code we
“connect” ,via SPI bus, our ESP32C3 SoC to the external modem and we send the initialization commands to
the modem.

Fig 3.3 loT DevKit with HT ESP32C3 board and LoRa sx1276 modem on RFM95 module with SPI bus
(sck,miso,mosi) and control lines: DIOO (dio_0), NSS (ss), RESET (reset).

#lora_init.py

from machine import Pin, SPI

import time

import sx127x # SX127x LoRa driver (ensure the library is installed)
import esp32

# ——— LoRa Pins and SPI Bus Setup ——-— HT
lora_pins = {
'dio_0': 2, # DIOO pin for interrupt
'ss': 4, # Slave Select (SS)
'reset': 10, # Reset pin
'sck': 6, # SPI Clock pin
'miso': 5, # SPI MISO pin
'mosi': 7 # SPI MOSI pin

}
# SPI bus configuration for SX1276
lora_spi = SPI(

baudrate=10000000, # Set baudrate to 10 MHz

polarity=0, # Clock polarity (CPOL)

phase=0, # Clock phase (CPHA)

bits=8, # 8 bits per transfer

firstbit=SPI.MSB, # MSB first

sck=Pin(lora_pins['sck'], Pin.OUT, Pin.PULL_DOWN), # SCK (clock)
mosi=Pin(lora_pins['mosi'], Pin.OUT, Pin.PULL_UP), # MOSI (Master Out Slave In)
miso=Pin (lora_pins['miso'], Pin.IN, Pin.PULL_UP), # MISO (Master In Slave Out)

)

# LoRa configuration with default parameters

lora_default = {
'frequency': 868E6,
'tx_power_level': 14,
'signal_bandwidth': 125E3,
'spreading_factor': 7,
'coding_rate': 5,
'preamble_length': 8,
'implicit_header': False,
'sync_word': 0x12,
'enable_crc': True

Frequency for Europe (868 MHz ISM band)
Transmission power level (14 dBm)
Signal bandwidth (125 kHz)

Spreading factor (7)

Coding rate (4/5)

Preamble length (8)

Explicit header mode

LoRa sync word

Enable CRC for error detection

HHHEHHEHHN

Low Power loT Architectures SmartComputerLab 4



# ——— SX1276 LoRa Driver Initialization —-——

def lora_init():
# Reset the SX1276
reset_pin = Pin(lora_pins['reset'], Pin.OUT)
reset_pin.value (0)
time.sleep(0.01) # Short delay
reset_pin.value (1)
# Initialize the SX1276 LoRa driver with default parameters
lora = sx127x.SX127x(spi=lora_spi, pins=lora_pins, parameters=lora_default)
# Confirm initialization
print ("LoRa modem initialized with default parameters.")
return lora

#lora_init () # only for test

MPY: soft reboot
SX version: 18
LoRa modem initialized with default parameters.

To do:
Attention: Correct initialization of the modem/module prints: SX version: 18

Analyze the above code , distinguish 3 parts: connection, default radio link parameters (may be
modified), and the initial initialization run with lora_init () function.

Low Power loT Architectures SmartComputerLab



3.1.2 LoRa sender - main_send_lora.py and recv ACK

In the following example we send data packets over LoRa link. The format of the packets is the same as in the
already presented ESP-NOW sender nodes (see Lab 4). The data packet contains 32 bytes.

116s3f - 32 bytes

chan wkey lumi temp humi

Fig. 3.4 Structure of LoRa packets carrying the channel number, write key/topic, and sensor values.

Note that the code below integrates both sending and receiving functions. The receiving function is used to
capture the return acknowledgment (ACK) packet. This return packet does not carry sensor data; instead, it
confirms that the data packet has been successfully received and may also include control information, which
will be examined in the following labs.

Reception of the return packet is handled through a callback function that operates independently of the main
operational loop implemented in the main () function. This callback is triggered by an interrupt signaling the
arrival of a new LoRa packet in the modem’s input buffer.

This interrupt-driven reception mechanism ensures timely handling of incoming packets without blocking the
main application flow.

import time, ustruct

from machine import I2C, Pin, deepsleep
from sensors import sensors

from lora_init import lora_init

# Initialize LoRa communication

lora = lora_init()

def onReceive (lora_modem, payload) :
#print ("Waiting for LoRa packets...")
ACK=payload.decode ()
print ("Received LoRa packet:"+str (ACK)) #, payload.decode())
# Function to send sensor data over LoRa
def send_lora_data(l, t, h):
try:
# Create the message with temperature, humidity, and luminosity
message = f"L:{1:.2f},T:{t:.2f},H:{h:.2£f}"
print ("Sending LoRa packet:", message)
# prepare data packet with bytes
data = ustruct.pack('il6s3f', 1254, 'smartcomputerlab',1l,t,h)
# Convert message to bytes
# lora.println(bytes (message, 'utf-8'))
lora.println(data)
print ("LoRa packet sent successfully.")
except Exception as e:

print ("Failed to send LoRa packet:", e)
# Main program
ACK_wait_time = 2 # ACK waiting time depends on the protocol and data rate

def main():

lora.onReceive (onReceive)

lora.receive()

while True:
# Capture sensor data
lumi, temp, humi = sensors(sda=8, scl=9)
print ("Luminosity:", lumi, "lux")
print ("Temperature:", temp, "C"); print ("Humidity:", humi, "%")
# Send sensor data over LoRa
send_lora_data (lumi, temp, humi)
lora.receive ()

time.sleep (ACK_wait_time) # waiting for ACK frame
#lora.sleep() # only for deepsleep
#deepsleep (10*1000) # 10*1000 miliseconds

# Run the main program

main ()

Low Power loT Architectures SmartComputerLab 6



3.1.3 LoRa receiver - and sender ACK

Below we have corresponding receiver node that displays the received data on its OLED screen. It responds with
a simple ACK packet (message) to confirm the reception of the data packet.

from machine import Pin, I2C, SPI

import ustruct, time

from lora_init import *

from sensors_display import *

lora_modem = lora_init ()

# —-—— Receive LoRa Packet -—-

def onReceive (lora_modem, payload) :
rssi = lora_modem.packetRssi ()
chan, wkey, lumi, temp, humi = ustruct.unpack('ilés3f', payload)
print ("Received LoRa packet RSSI:"+str(rssi)); print(chan,wkey, lumi, temp, humi)
sensors_display (8,9, lumi, temp, humi, 0)
lora_modem.println ("ACK_packet") # sending ACK packet
lora_modem.receive ()

def main():
lora_modem.onReceive (onReceive)
lora_modem.receive ()
while True:
time.sleep(2)
print ("in the loop")

main ()

from machine import Pin, I2C
from ssd1306 import SSD1306_I2C
import time

def sensors_display(sda, scl, luminosity, temperature, humidity, duration):

i2c = I2C(scl=Pin(scl), sda=Pin(sda), freq=400000)
oled = SSD1306_I2C (128, 64, i2c)
oled.fill(0)
oled.text ("Sensor readings", 0, 0)
oled.text ("Lux: {:.2f}".format (luminosity), 0, 16)
oled.text ("Temp: {:.2f}".format (temperature), 0, 32)
oled.text ("Humi: {:.2f}".format (humidity), 0, 48)
oled.show()
if duration!=0:

time.sleep (duration)

oled.poweroff ()

0ata = USTrUCT.pack( 116S3T', 1254, SMAartcomputer Lap) @ 1.55X127%py def main():
@ 2.1.wifi_parameters.py lora_modem.onReceive(onReceive)
@ 21.wifi tools.py lora_moden.receive()
lora.println(data) g 22recv.udppy while True:
print("LoRa packet sent successfully.") b i‘i‘:\f"iﬁd"ﬁr‘:’;‘p” time.sleep(2)
except Exception as e: & BmZ’rmW peleeppy print("in the loop")
print("Failed to send LoRa packet:", e) @) 2.3RTC_memory.count py
@) 2.3RTC_momory display_count.py main()
@) 2.5.Thingspeak recv_data.py
£l @) 2.5ThingSpeak_send_sensors.py | | [«
Shell @ 3.1.web serverled.py p—
S — 32005 tools.py
Luminosity: 391.68 lu @) 3.2web server.matt_credentials.§ warning: I2C(-1, ...) is deprecated, use SoftI2C(...) instead
Temperature: 25.65166 C @3.2.eb server power_credentials in the loop
Humidity: 41.16873 % @) 3.2meb serversensors.py in the loop
sending LoRa packet: L:391.68,T:25.65,H:41.17 @ 3.2web senverthingspeak rede s | Raceived LoRa packet: -35
LoRa packet sent successfully. MicroPython device =" 1254 b'smartcomputerlab' 391.68 25.65166 40.96274
Received LoRa packet:ACK_packet 2.3NTP_server_deepsleep.py Warning: I2¢(-1, ...) is deprecated, use SoftI2C(...) instead
Luminosity: 391.68 lux @ bootpy in the loop
Temperature: 25.66238 C & esprow.gateway_sensors.py Received LoRa packet:-35
Humidity: 41.19925 % @ espnowrecv.py 1254 b'smartcomputerlab' 391.68 25.66238 41.08481
Sending LoRa packet: L:391.68,T:25.66,H:41.20 @ lora-recy_sensors py warning: I2C(-1, ...) is deprecated, use SoftI2C(...) instead
LoRa packet sent successfully. @ lora initpy in the loop
Received LoRa packet:ACK_packet g;a';py 5 Received LoRa packet:-36
Luminosity: 391.68 lux vty 1254 b'smartcomputerlab' 391.68 25.65166 41.16873
Temperature: 25.66238 C @, sensors.py warning: I2C(-1, ...) is deprecated, use SoTtI2C(...) instead
Humidity: 41.18399 % @ sensors_display.py in the loop
Sending LoRa packet: L:391.68,T:25.66,H:41.18 @55d1306.py Received LoRa packet:-35
LoRa packet sent successfully. @ sx127xpy 1254 b'smartcomputerlab' 391.68 25.66238 41.19925
Received LoRa packet:ACK_packet & ThingSpeak _send.py warning: I2C(-1, ...) is deprecated, use SoftI2C(...) instead
Luminosity: 391.68 lux & wifi_tools.py in the loop
Temperature: 25.67311 C in the loop
Humidity: 41.19925 % Received LoRa packet:-34
sending LoRa packet: L:391.68,T:25.67,H:41.20 1254 b'smartcomputerlab' 391.68 25.66238 41.18399

Fig. 3.5 LoRa sender and receiver nodes; note the use of ACK packet

To do
Run the Remote Terminal with deepsleep mode for low_power stage

Low Power loT Architectures SmartComputerLab 7



3.2 Sending/receiving formatted data/ACK packets with AES encryption
The following example is a minor modification of the previous one; however, it introduces the use of power-
control parameters delivered through the ACK packet.

The formatted ACK packet contains four fields:

1. The channel number (topic), which also serves as the terminal identifier,

2. The ecycle duration (in seconds),

3. The delta value, indicating the minimum difference between the last transmitted sensor reading and
the current one (e.g., temperature),

4. The kpack value, which specifies the maximum number of consecutive measurement cycles allowed
without transmitting a data packet.

All of these parameters are used to adaptively reduce the average current consumption of the remote
terminal by controlling its transmission frequency and sensitivity.

These formatted ACK packets are encrypted using the AES encryption scheme, ensuring secure delivery of
control information.

AES

AES (Advanced Encryption Standard) is a symmetric encryption algorithm widely used for secure data
transmission. It was established by the U.S. National Institute of Standards and Technology (NIST) in 2001 and
is recognized for its efficiency and high level of security. AES uses the same key for both encryption and
decryption, making it a symmetric encryption method.

Key features of AES include:
1. Block Cipher: It encrypts data in fixed-size blocks (128 bits).
2. Key Sizes: Supports key sizes of 128, 192, or 256 bits, providing varying levels of security.
3. Efficient and Fast: Designed to perform efficiently in both hardware and software environments.
4. Widely Adopted: Trusted by industries, governments, and organizations for secure communications.

3.2.1 Sending data packets and receiving ACK packets (AES encrypted)

We start this code with the introduction of AES functions; they are prepared in aes_tools.py module as
follows:

3.2.1.1 AES module - aes_tools.py

# aes_tools.py
import ucryptolib

# AES encryption function using ucryptolib

def aes_encrypt (data, aes_key) :
cipher = ucryptolib.aes(aes_key, 1) # 1 = ECB mode
encrypted = cipher.encrypt (data) # data size must be multiple 16 bytes
return encrypted

# AES decryption function

def aes_decrypt (encrypted_data, aes_key) :
cipher = ucryptolib.aes(aes_key, 1) # 1 = ECB mode
data = cipher.decrypt (encrypted_data) # data size must be multiple 16 bytes
return data

3.2.1.2 The sender module (with AES) code

import time, ustruct

from machine import I2C, Pin, deepsleep

from sensors import sensors

from lora_init import lora_init

from aes_tools import *

AES_KEY = b'smartcomputerlab' # Replace with your actual 16-byte AES key
# Initialize LoRa communication

lora = lora_init()

chan = 1234

def onReceive (lora_modem, payload) :
if len(payload)==16:
ack=aes_decrypt (payload, AES_KEY)
rchan, cycle, delta, kpack = ustruct.unpack('2ifi', ack)

Low Power loT Architectures SmartComputerLab 8



print ("encrypted ACK received");
if chan==rchan :
print (cycle,delta, kpack)

# Function to send sensor data over LoRa
def send_lora_data(l, t, h):
try:
# Create the message with temperature, humidity, and luminosity
message = f"L:{1:.2f},T:{t:.2f},H:{h:.2f}"
print ("Sending LoRa packet:", message)
# prepare data packet with bytes
data = ustruct.pack('il6s3f', chan, 'smartcomputerlab',1l,t,h)
enc_data=aes_encrypt (data, AES_KEY)
# Convert message to bytes
# lora.println(bytes (message, 'utf-8'))
lora.println(enc_data)
print ("LoRa encrypted packet sent successfully.")
except Exception as e:
print ("Failed to send LoRa packet:", e)

# Main program
ACK_wait_time = 2 # ACK waiting time depends on the protocol and data rate
def main():
lora.onReceive (onReceive)
lora.receive ()
while True:
# Capture sensor data
lumi, temp, humi = sensors(sda=8, scl=9)

print ("Luminosity:", lumi, "lux")
print ("Temperature:", temp, "C")
print ("Humidity:", humi, "%")

# Send sensor data over LoRa
send_lora_data(lumi, temp, humi)
lora.receive ()

time.sleep (ACK_wait_time) # waiting for ACK frame
#lora.sleep() # only for deepsleep
#deepsleep(10*1000) # 10*1000 miliseconds

# Run the main program
main ()

3.2.1.3 Receiving data packets and sending ACK packets (AES encrypted)

from machine import Pin, I2C, SPI
import ustruct

from lora_init import *

from sensors_display import *
from aes_tools import *

import time

AES_KEY = b'smartcomputerlab' # Replace with your actual 16-byte AES key
# Initialize LoRa modem
lora_modem = lora_init ()

# —-—— Receive LoRa Packet -—-
def onReceive (lora_modem, payload) :
rssi = lora_modem.packetRssi ()
if len(payload)==32:
rssi = lora_modem.packetRssi ()
data=aes_decrypt (payload, AES_KEY)
chan, wkey, temp, humi, lumi = ustruct.unpack('ilés3f', data)
print ("Received encrypted LoRa packet with RSSI: "+str(rssi)) #, payload.decode())
print (chan, wkey, lumi, temp, humi)
sensors_display (8,9, lumi, temp, humi, 0)
ack=ustruct.pack('2ifi',chan,10,0.01,10) # chan, cycle, delta, kpack
enc_ack=aes_encrypt (ack,AES_KEY)
lora_modem.println(enc_ack) # sending ACK packet
print ("send encrypted ack AES packet")
lora_modem.receive ()

def main():
lora_modem.onReceive (onReceive)
lora_modem.receive ()
while True:
time.sleep(2)
print ("in the loop")

main ()

Low Power loT Architectures SmartComputerLab



36 ACK_wailt_time = 2
37 def main():

— it ey gttt
28

29

30 lora.println(enc_data)

31 print("LoRa encrypted packet sent succes
32 except Exception as e:

33 print("Failed to send LoRa packet:", e)
34

35

A1

1v U.UL 1U
Luminosity: 146.88 lux

Temperature: 23.98927 C

Humidity: 47.51639 %

Sending LoRa packet: L:146.88,T:23.99,H:47.52
LoRa encrypted packet sent successfully.
encrypted ACK received

10 0.01 10

Luminosity: 146.88 lux

Temperature: 24.0 C

Humidity: 47.59268 %

Sending LoRa packet: L:146.88,T7:24.00,H:47.59
LoRa encrypted packet sent successfully.
encrypted ACK received

10 0.01 10

Luminosity: 134.64 1lux

Temperature: 24.02145 C

Humidity: 47.33328 %

Sending LoRa packet: L:134.64,T7:24.02,H:47.33
LoRa encrypted packet sent successfully.
encrypted ACK received

10 0.01 10

Luminosity: 134.64 lux

Temperature: 24.0 C

Humidity: 47.25699 %

sending LoRa packet: L:134.64,T7:24.00,H:47.26
LoRa encrypted packet sent successfully.
encrypted ACK received

10 0.01 10

perso
photos_all

PPK2

projects
pycom-libraries-master
Python.complete
RISC-V

RiscvProject

RPL

¢
!
¢
-
!
¢
-
!
!
L SDR

TYTYTTTYTYeS

MicroPython device
@ 23.NTP_server_deepsleep.py
& aes_tools.py
@ bootpy
@ espnow.gateway_sensors.py
& espnow.recv.py
@ lora.AES.recv.param.py
@ lora.recv.send.ack AES.py
@ lora.recy sensors.py
@ lora_init.py
& mainpy
& MQTT_send.py
@ network_connections.py
& rtc_tools.py
@ sensors.py
@ sensors_display.py
& 55d1306.py
@ sx127xpy
@ ThingSpeak_send.py
& wifi_tools.py

Eé def main():

29 lora_modem.onReceive(onReceive)
30 lora_moden. receive()

31 while True:

32 time.sleep(2)

33 print("in the loop")

34

25 main()|

36

warning: L2C(-1, ...) 1s deprecated, use
send encrypted ack AES packet
in the loop

in the loop

Received encrypted LoRa packet with RSSI:

1234 b'smartcomputerlab' 47.33328 146.88
warning: I2C(-1, ...) is deprecated, use
send encrypted ack AES packet

in the loop

Received encrypted LoRa packet with RSSI:

1234 b'smartcomputerlab' 47.51639 146.88
Warning: I2C(-1, ...) is deprecated, use
send encrypted ack AES packet

in the loop

Received encrypted LoRa packet with RSSI:

1234 b'smartcomputerlab' 47.59268 146.88
warning: I2C(-1, ...) is deprecated, use
send encrypted ack AES packet

in the loop

Received encrypted LoRa packet with RSSI:

1234 b'smartcomputerlab' 47.33328 134.64
wWarning: I2C(-1, ...) is deprecated, use
send encrypted ack AES packet

in the loop

in the loop

Received encrypted LoRa packet with RSSI:

1234 b'smartcomputerlab' 47.25699 134.64
Warning: I2C(-1, ...) is deprecated, use
send encrypted ack AES packet

Fig. 3.6 LoRa sender and receiver nodes with the use of ACK packets and AES encryption

Low Power loT Architectures

SmartComputerLab

SOTTIZC(...

-30
23.96782

SoftI2c(. ..

-30
23.98927

SoftI2c(. ..

-29
24.0

softIzc(...

-30
24.02145

softI2c(. ..

-30
24.0

SoftI2C(...

instead

instead

instead

instead

instead

instead

10



3.3 Building LoRa-WiFi gateways

Now we have operational link with data and ACK packets so ,at the receiver side, we can add the relay

transmission via WiFi connection to MQTT broker or to ThingSpeak server.

Sensors OLED

chan, wkey, lumi, temp, humi

data packet

—

LoRa - receiver-

LoRa - sender gateway

<
| ACK packet |
- -

chan, cycle, delta, kpack

Fig 3.7 loT architecture with Remote Terminal and LoRa-WiFi gateway to MQTT broker or/and ThingSpeak

server.

3.3.1 LoRa-WiFi gateway to MQTT broker

Let us start with terminal node that sends an encrypted data packet every n seconds and first waits for the
corresponding encrypted ack packet during ACK_wait_time. Then after few seconds the node sends next

data packet.

v b ack: cycle,delta,kpack

ACK_wait_time

v

Fig 3.8 Simple sending (data) - receiving (ack) cycle with high_power wait time

3.3.1.1 LoRa sender node

import time, ustruct

from machine import I2C, Pin, deepsleep
from sensors import sensors

from lora_init import lora_init

from aes_tools import *

AES_KEY = b'smartcomputerlab' # Replace with your actual 16-byte AES key
# Initialize LoRa communication

lora = lora_init()

chan = 1234

led=Pin (3)

cycle=10

def onReceive (lora_modem, payload) :

global cycle
if len(payload)==

Low Power loT Architectures SmartComputerLab

11



ack=aes_decrypt (payload, AES_KEY)
rchan, cycle, delta, kpack = ustruct.unpack('2ifi', ack)
print ("encrypted ACK received");
if chan==rchan
print (cycle,delta, kpack)

# Function to send sensor data over LoRa
def send_lora_data(l, t, h):
try:
# Create the message with temperature, humidity, and luminosity
message = f"L:{1:.2f},T:{t:.2f},H:{h:.2£f}"
print ("Sending LoRa packet:", message)
# prepare data packet with bytes
data = ustruct.pack('il6s3f', chan, 'smartcomputerlab',1l,t,h)
enc_data=aes_encrypt (data, AES_KEY)
lora.println(enc_data)
print ("LoRa encrypted packet sent successfully.")
except Exception as e:
print ("Failed to send LoRa packet:", e)

# Main program
ACK_wait_time = 2 # ACK waiting time depends on the protocol and data rate
def main():

lora.onReceive (onReceive)

lora.receive ()

led.off ()
while True:
led.on()
lumi, temp, humi = sensors(sda=8, scl=9)
print ("Luminosity:", lumi, "lux")
print ("Temperature:", temp, "C")
print ("Humidity:", humi, "%")

# Send sensor data over LoRa
send_lora_data(lumi, temp, humi)
lora.receive()

time.sleep (ACK_wait_time) # waiting for ACK frame
led.off()
print (cycle)
if cycle<600 : # to high value
time.sleep(cycle)
else:
time.sleep(15)
#lora.sleep() # only for deepsleep
#deepsleep (10*1000) # 10*1000 miliseconds

# Run the main program
main ()

3.3.1.2 LoRa-WiFi to MQTT gateway node

from machine import Pin, I2C, SPI
import ustruct, random, ubinascii
from lora_init import *

from sensors_display import *

from aes_tools import *

import machine, time

from wifi_tools import *

from umgtt.simple import MQTTClient
SSID = 'Bbox—-9ECEBF79'

PASS = '54347A3EA6A1D6C36EF6A9ES5156F 7D
# MQTT broker details

MQTT_BROKER = "broker.emgx.io" # Replace with your broker address
MQTT_PORT = 1883
MQTT_CLIENT_ID = ubinascii.hexlify(machine.unique_id()) # Unique client ID

MQTT_ TOPIC = 'esp32/sensor_data' # Replace with your topic

# Initialize MQTT client

client = MQTTClient (MQTT CLIENT_ ID, MQTT_BROKER, port=MQTT_ PORT)

AES_KEY = b'smartcomputerlab' # Replace with your actual 16-byte AES key
lora_modem = lora_init ()

def connect_mqgtt():
"""Connect to the MQTT broker."""
try:
client.connect ()
print ("Connected to MQTT broker.")
except Exception as e:
print ("Failed to connect to MQTT broker:", e)

def disconnect_mqgtt () :
client.disconnect ()
print ("Disconnected from MQTT broker.")

def publish_sensor_data(lumi, temp, humi ):
"""Publish sensor data to MQTT broker."""
if lumi is not None and temp is not None and humi is not None:
message = {

Low Power loT Architectures SmartComputerLab 12



"lumi": lumi,
"temp": temp,
"humi": humi

}

client.publish (MQTT_ TOPIC, str (message))

print ("Published:", message)
else:

print ("Failed to publish sensor data.")

# —-—— Receive LoRa Packet —-——

def onReceive (lora_modem, payload) :
rssi = lora_modem.packetRssi ()
if len(payload)==32:

rssi = lora_modem.packetRssi ()

data=aes_decrypt (payload, AES_:

chan, wkey, lumi, temp, humi

connect_mqgtt ()

KEY)

= ustruct.unpack('il6s3f', data)

print ("Received encrypted LoRa packet with RSSI: "+str(rssi)) #, payload.decode())
print (chan, wkey, lumi, temp, humi)
sensors_display (8,9, lumi, temp, humi, 0)

publish_sensor_data(lumi, temp, humi)

disconnect_mgtt ()
rcycle=random.randint (5, 15)

ack=ustruct.pack('2ifi', chan,rcycle, 0.01,10)

enc_ack=aes_encrypt (ack,AES_KEY)
# sending ACK packet
print ("send encrypted ack AES packet")

lora_modem.println (enc_ack)
lora_modem.receive ()

def main():
lora_modem.onReceive (onReceive)
lora_modem.receive ()
if connect_WiFi (SSID,PASS) :
print ("WiFi connected")
while True:
time.sleep(2)
print ("in the loop")

main ()

# chan,cycle, delta, kpack

shell
Luminosity: 293.76 Llux
Temperature: 24.26813 C
Humidity: 58.82315 %
Sending LoRa packet: L:293.76,T:24.27,H:58.82
LoRa encrypted packet sent successfully.
encrypted ACK received
14 0.01 10
14
Luminosity: 269.28 lux
Temperature: 24.3003 C
Humidity: 58.80026 %
Sending LoRa packet: L:269.28,T7:24.30,H:58.80
LoRa encrypted packet sent successfully.
encrypted ACK received
14 0.01 10
14
Luminosity: 269.28 lux
Temperature: 24.32175 C
Humidity: 58.79263 %
Sending LoRa packet: L:269.28,T:24.32,H:58.79
LoRa encrypted packet sent successfully.
encrypted ACK received
5 0.01 10
5

@) gWIOra.WIm.mTpy
@ lora.AES recv.param.py

@ lora.recv.ackAES.py

@ lorarecv.send.ackAES py
@ lora.recy_sensors.py

& lora_initpy

@ mainpy

& MQTT_send.py

&) network_connections.py

& ric_tools.py

&) sensors.py

& sensors_display.py

@) s5d1306.py

& sx127xpy

& ThingSpeak_send.py

&) wifi_tools.py

Shell
Received encrypted LoRa packet with RSSI: -35

1234 b'smartcomputerlab' 269.28 24.3003 58.80026

warning: I2C(-1, ...) is deprecated, use SoftI2C(...) instead
Connected to MQTT broker.

Published: {'temp': 24.3003, 'humi': 58.80026, 'lumi': 269.28}
Disconnected from MQTT broker.

send encrypted ack AES packet

in the loop

in the loop

in the loop

in the loop

in the loop

in the loop

in the loop

in the loop

Received encrypted LoRa packet with RSSI: -42

1234 b'smartcomputerlab' 269.28 24.32175 58.79263

warning: I2C(-1, ...) is deprecated, use SoftI2C(...) instead
Connected to MQTT broker.

Published: {'temp': 24.32175, 'humi': 58.79263, 'lumi': 269.28}
Disconnected from MQTT broker.

send encrypted ack AES packet

in the loop

in the loop

Fig 3.9 LoRa sender and receiver gateway (LoRa-WiFi) to MQTT broker.

To do

Analyze the code and run it with your credentials: WiFi and MQTT broker.
You can also run mosquitto_sub program on your PC/SBC and observe the published messages.

bako@bako-U820:~$ mosquitto_sub -h broker.emgx.io -t esp32/sensor_data

{'temp': 24.43973, 'humi': 58.62479,
{'temp': 24.43973, 'humi': 58.40353,
{'temp': 24.40755, 'humi': 58.43405,

Low Power loT Architectures

'lumi': 220.32}
220.32}
'lumi': 220.32}

'lumi’':

SmartComputerLab 13



3.3.3 LoRa-WiFi gateway to ThingSpeak server

from machine import Pin, I2C, SPI

import ustruct, random, ubinascii, urequests
from lora_init import *

from display_sensors import *

from aes_tools import *

import machine, time

from wifi_tools import *

# WiFi credentials
SSID = 'Bbox—-9ECEBF79'
PASS = '54347A3EA6A1D6C36EF6A9ES5156F 7D

AES_KEY = b'smartcomputerlab' # Replace with your actual 16-byte AES key
# Initialize LoRa modem

lora_modem = lora_init ()

rssi=0; chan=0; wkey=""; 1lumi=0.0; temp=0.0; humi=0.0

# Function to send data to ThingSpeak
def send_data_to_thingspeak (lumi, temp, humi, rssi):
try:
sfl="&fieldl="+str (lumi); sf2="&field2="+str(temp); sf3="&field3="+str (humi);
sf4="&field4="+str (rssi)
url = "https://thingspeak.com/update?key=YOX31MOEDKOOJATK"+sfl+sf2+sf3+sf4
response = urequests.get (url)
response.close ()
print ("Data sent to ThingSpeak:", lumi, temp, humi, rssi)
except Exception as e:
print ("Failed to send data:", e)

# ——— Receive LoRa Packet ———
def onReceive (lora_modem, payload) :
global rssi; global chan; global wkey; global lumi; global temp; global humi
rssi = lora_modem.packetRssi ()
if len(payload)==32:
rssi = lora_modem.packetRssi ()
data=aes_decrypt (payload, AES_KEY)
chan, wkey, lumi, temp, humi = ustruct.unpack('ilés3f', data)

print ("Received encrypted LoRa packet with RSSI: "+str(rssi)) #, payload.decode())

print (chan, wkey, lumi, temp, humi)

display_sensors (8,9, lumi, temp, humi, 0)

rcycle=random.randint (5, 15)

ack=ustruct.pack('2ifi', chan,rcycle,0.01,10) # chan,cycle, delta, kpack
enc_ack=aes_encrypt (ack, AES_KEY)

lora_modem.println(enc_ack) # sending ACK packet

print ("send encrypted ack AES packet")

lora_modem.receive ()

def main():
global rssi; global lumi; global temp; global humi
lora_modem.onReceive (onReceive)
lora_modem.receive ()
while True:
if connect_WiFi (SSID, PASS):
print ("WiFi connected")
send_data_to_thingspeak (lumi, temp, humi, rssi)
time.sleep(1)
disconnect_WiFi ()
time.sleep(15)

main ()

Low Power loT Architectures SmartComputerLab

14



Luminosity: 146.88 lux
Temperature: 24.79366 C
Humidity: 57.61771 %

LoRa encrypted packet sent
encrypted ACK received

14 0.01 10

14

Luminosity: 146.88 lux
Temperature: 24.8151 C
Humidity: 57.52615 %

LoRa encrypted packet sent
encrypted ACK received

10 0.01 10

10

Luminosity: 146.88 lux
Temperature: 24.82583 C
Humidity: 57.48038 %

LoRa encrypted packet sent
encrypted ACK received

11 0.01 10

11

Fig 3.10 LoRa sender and receiver gateway (LoRa-WiFi)

Sending LoRa packet: L:146.

Sending LoRa packet: L:146.

Sending LoRa packet: L:146.

88,T:24.79,H:57.62
successfully.

88,T:24.82,H:57.53
successfully.

88,T:24.83,H:57.48
successfully.

s ssurovupy
& sx127xpy

& wifits_send.py
@) wifi_tools.py

Received encrypted LoRa packet with RSSI: -34

1234 b'smartcomputerlab' 146.88 24.79366 57.64059
send encrypted ack AES packet

Received encrypted LoRa packet with RSSI: -35

1234 b'smartcomputerlab' 146.88 24.80438 57.67874
send encrypted ack AES packet

('192.168.1.121", '255.255.255.0', '192.168.1.254',
WiFi connected

'192.168.1.254")

Data sent to ThingSpeak: 146.88 24.80438 57.67874 -35

Received encrypted LoRa packet with RSSI: -34

1234 b'smartcomputerlab' 146.88 24.79366 57.61771
send encrypted ack AES packet

('192.168.1.121", '255.255.255.0"', '192.168.1.254',
WiFi connected

'192.168.1.254")

Data sent to ThingSpeak: 146.88 24.79366 57.61771 -34

Received encrypted LoRa packet with RSSI: -33

1234 b'smartcomputerlab' 146.88 24.8151 57.52615
send encrypted ack AES packet

Received encrypted LoRa packet with RSSI: -34

1234 b'smartcomputerlab' 146.88 24.82583 57.48038
send encrypted ack AES packet

('192.168.1.121", '255.255.255.0', '192.168.1.254',
WiFi connected

'192.168.1.254")

Data sent to ThingSpeak: 146.88 24.82583 57.48038 -34

to ThingSpeak server.

To do

Test the sender and gateway with your credentials for WiFi and ThingSpeak

Field 1 Chart

Field 2 Chart

700

600

500

luminosity

400

300

10:30

Field 3 Chart

Data Channel

10:35

Date

10:40

ThingSpeak.com

o Data Channel

220

215

temperature

210

10:30 10:35

Date

Field 4 Chart

10:40

ThingSpeak.com

100
80.0
80.0
70.0

humidity

60.0
50.0

40.0
10:30

Data Channel

10:35
Date

10:40

ThingSpeak.com

Data Channel
-42.0

-43.0

-44.0 o

RSSI

-45.0

—48.0

-47.0
10:30 10:35
Date

10:40

ThingSpeak.com

Fig 3.11 ThingSpeak diagrams showing the impact of delta parameters on the sending sequence (stream)

Low Power loT Architectures

SmartComputerLab

15



	IoT Lab 3
	Long distance communication with Remote Terminals over LoRa radio links
	3.1 Essential Features of LoRa Communication Technology
	Key Use Cases for LoRa
	Comparison with Other Technologies
	Advantages of LoRa
	Limitations of LoRa


	3.1 Simple LoRa sender and receiver nodes
	3.1.1 LoRa modem initialization parameters and function
	3.1.2 LoRa sender - main_send_lora.py and recv ACK
	3.1.3 LoRa receiver – and sender ACK

	3.2 Sending/receiving formatted data/ACK packets with AES encryption
	AES
	3.2.1 Sending data packets and receiving ACK packets (AES encrypted)
	3.2.1.1 AES module – aes_tools.py
	3.2.1.2 The sender module (with AES) code
	3.2.1.3 Receiving data packets and sending ACK packets (AES encrypted)


	3.3 Building LoRa-WiFi gateways
	3.3.1 LoRa-WiFi gateway to MQTT broker
	3.3.1.1 LoRa sender node
	3.3.1.2 LoRa-WiFi to MQTT gateway node

	3.3.3 LoRa-WiFi gateway to ThingSpeak server



