loT Lab 2

Building Close Terminals and Gateways with MAC-WiFi
(ESP-NOW)

In this lab we are going to study and experiment with ESP-NOW protocol that allows us to build simple yet very
efficient communication links between the ESP32 based nodes.

2.1 Essential Features of ESP-NOW

ESP-NOW is a wireless communication protocol developed by Espressif for ESP32 SoCs. It operates at the
MAC layer, providing fast and low-power communication between devices. Below are the key features:

1. Peer-to-Peer Communication
» Devices can communicate directly without a router or access point.
+ ESP-NOW supports communication between multiple peers.
2. Low Latency
* Operates at the MAC layer, bypassing the IP stack, which reduces communication latency significantly.
3. Broadcast and Unicast Modes
» Broadcast: Send data to all paired devices.
» Unicast: Target specific peers with their MAC addresses.
4. Low Power
+ ESP-NOW is designed for low-power applications, making it suitable for IoT devices.
5. Encrypted Communication
» Supports secure communication using AES-128 encryption. Pre-shared keys (PSKs) are exchanged for
encrypting data.
6. Supports Up to 20 Peers
* An ESP32 can manage up to 20 peer devices.
7. Platform Compatibility
* Works across ESP32, ESP8266, and other Espressif chips.
* Use Cases of ESP-NOW
* loT Networks: Smart home devices, sensor nodes, and actuators.
+ Data Logging: Wireless data collection in a mesh or star topology.
* Wearable Devices: Low-power communication for fithess trackers or medical devices.
* Remote Controls: Reliable communication for remote control devices.

How to Use ESP-NOW on ESP32

1. Initialization

* Enable the Wi-Fi interface in either STA or AP mode. STA mode is commonly used.
2. Initialize ESP-NOW

* Use the espnow library in MicroPython (or equivalent APl in Arduino or C).

* Callesp_now_init () or similar to set up ESP-NOW.
3. Pair Devices

* Add peers by specifying their MAC addresses.

* You can also define whether the communication is encrypted.
4. Send Data

» Use the send () method or its equivalent to transmit data to a specific peer or broadcast to all.
5. Receive Data

» Set up a callback function to handle incoming data.
6. Manage Peers

* Add, modify, or remove peers dynamically as needed.

Low Power loT Architectures SmartComputerLab 1

Before programming ESP-NOW based application we need to know the MAC address of the receiver node. Try
the following example.

import network

Initialize the network interface
wlan = network.WLAN (network.STA_IF)
Activate the WLAN Interface
wlan.active (True)

Check if the interface is active (connected)
if wlan.active():

Get the MAC address

mac_address = wlan.config("mac")

print (mac_address)

print ("Device MAC Address:", ":".join(["{:02X}".format (byte) for byte in mac_address]))
else:

print ("Wi-Fi is not active.")

MPY: soft reboot
b'\x98=\xae\xb4\x00\x0c'
Device MAC Address: 98:3D:AE:B4:00:0C

DT - direct terminal

WiFi - Router

WiFi
<>

Thing in Cloud
(channel)

CT - close terminal

sensors

?». MAC-WiFi
A

L] ? *
I 1]
channel - wkey (streams) - . + : L
‘\ N L :
. WiFi: SSID, PASS = == =" |
~
- 1
. _--» @Pport =-=-=*
AN
10T socket

loT
server

Fig 2.1 Sending sensor data from Close Terminal via WiFi-Router to ThingSpeak server. The loT socket
parameters decomposition: channel in Close Terminal, @IP and port number in WiFi-Router.

Low Power loT Architectures SmartComputerLab 2

2.1 Simple sender and receiver nodes

The following are two programs to run on separate boards; one is sender and the other one is receiver.
SENSOrs

espnow - sender espnow - receiver

@eth, wifi-channel : peer
Fig. 2.1 Simple sender-receiver architecture to communicate with peer node (receiver)
2.1.1 ESP-NOW simple sender

The sender program uses integrated button on DevKit (sig= Pin 0) to provide simple messages : start
and stop.

import network
from machine import Pin
import espnow
import utime
A WLAN interface must be active to send()/recv()
sta = network.WLAN (network.STA_IF) # Or network.AP_IF
sta.disconnect ()
sta.active (True)
sta.config (txpower=5.0)
sta.config(channel=1)
sta.disconnect ()
Initialize ESP-NOW
esp = espnow.ESPNow ()
esp.active (True)
print ("now active")
#peer= b'\x48\xCA\x43\xD4\x05\x84' # Replace with receiver's MAC address
peer= b'\xFF\XFF\xFF\xFF\xFF\xXFF' # Replace with broadcast MAC address
esp.add_peer (peer)
Create a function to send data when a button is pressed (optional)
button_pin = Pin(0, Pin.IN, Pin.PULL_UP)
Initialize variables for debouncing
last_button_state = 1 # Assuming the button is not pressed initially
debounce_delay = 50 # Adjust this value to your needs (milliseconds)
print (last_button_state)
while True:
Read the current state of the button
current_button_state = button_pin.value()
if current_button_state != last_button_state:
Wait for a short time to debounce the button
utime.sleep_ms (debounce_delay)
Read the button state again to make sure it's stable
current_button_state = button_pin.value()
If the button state is still different, it's a valid press
if current_button_state != last_button_state:
if current_button_state ==
message = "start"
print (£"Sending command : {message}")
esp.send (peer, message)
else:
message = "stop"
print (f"Sending command : {message}")
esp.send (peer, message)

last_button_state = current_button_state

MPY: soft reboot

now active

1

Sending command : start
Sending command : stop
Sending command : start
Sending command : stop

Low Power loT Architectures SmartComputerLab 3

2.1.2 ESP-NOW simple receiver

import network
from machine import Pin
import espnow
Initialize the network interface
wlan = network.WLAN (network.STA_IF)
Activate the WLAN Interface
wlan.active (True)
if wlan.active():
Get the MAC address
mac_address = wlan.config("mac")
print (mac_address)

print ("Device MAC Address:", ":".join(["{:02X}".format (byte) for byte in mac_address]))

else:
print ("Wi-Fi is not active.")

import network

A WLAN interface must be active to send()/recv()

sta = network.WLAN (network.STA_IF)

sta.active (True)

sta.config (txpower=5.0)

print ("Running on channel:", sta.config("channel"))

sta.disconnect () # Because ESP8266 auto-connects to last Access Point

e = espnow.ESPNow ()
e.active (True)

while True:
host, msg = e.recv()
if msg: # msg == None if timeout in recv()
print (host, msg)

@ BF2.max44009g_testpy wniwe irue:
current_button_state = button_pin.value()) BF2nowsensors term.toproxy.py host, msg = e.recv()
if current_button_state != last_button_state: #BF2.now_click_send_proxy.py if msg:

4| @ BF2.now_proxy_led_mqttpy print(host, msg)

@ BF2.now_proxy_sensors.mqtt.py
Shell & BF2.now_recy_led.py
& BF2 NTP.server read.py
@ BF2 NTP.server_read.deep_sleep.RTC. coutre

- @ BF2.RTC.memory.counter.py -
F MPY : soft reboot Micropython device — =

now active

1 @ 2.3.NTP_server_deepsleep.py

. @ boot.py

Sending command : start & esprowrecvy

Sending command : stop & mainpy

Sending command : start & MQTT_send.py

Sending command : stop @ network_connections.py

Sending command : start & sensors.py

Sending command : stop) Thingspeak_send.py

sending command : start @ wii_tools.py T

Sending command : stop
Sending command : start
Sending command : stop
Sending command : start

Sending command : stop MPY: soft reboot

Sending command : start b'\xadvNA\X05\xbo"

Sending command : stop Device MAC Address: AO:76:4E:41:05:B0
Sending command : start Running on channel: 1

sending command : stop b'\xa@VNC\x91P"' b'start'

sending command : start b'\xa®vNC\x91P' b'stop'

Sending command : stop b'\xa@vNC\x91P"' b'start'

b'\xa@vNC\x91P' b'stop'

Fig. 2.2 ESPNOW sender (signal) and receiver terminals in Thonny IDE

To do:

Analyze the above examples. Note the use of the WiFi channel number:
sta.config(channel=1)

Modify the above programs adding sensor values formatted as data including:
channel, wkey/topic, luminosity, temperature, humidity values:

data=ustruct.pack('il6s3f',1254, 'smartcomputerlab', luminosity, temperature, humidity)

Low Power loT Architectures SmartComputerLab

2.1.3 ESP-NOW sender - sensor’s values

In the following example we are going to send some actual values from sensors. These values as well as the
additional information to be usFig. 3.4 ed lately to send the data to loT server are structured as follows:

116s3f - 32 bytes

chan wkey lumi temp humi

Fig. 2.3 Data packet structure including channel number write key or topic name and three sensor values:
luminosity, temperature and humidity.
The sender side:

import network

from machine import Pin, deepsleep

import espnow

import utime, ustruct

from sensors import *

A WLAN interface must be active to send()/recv()

sta = network.WLAN (network.STA_IF) # Or network.AP_IF
#sta.disconnect ()

sta.active (True)

sta.config (txpower=5.0)

sta.config(channel=1) # must be provide from gateway channel
sta.disconnect () # For ESP8266

Initialize ESP-NOW

esp = espnow.ESPNow ()

esp.active (True)

print ("now active")

#peer= b'\x54\x32\x04\x0B\x3C\xF8' # Replace with receiver's MAC address
peer= b'\xFF\xFF\xFF\xFF\xFF\xFF' # broadcast MAC address
esp.add_peer (peer)

lumi, temp, humi=sensors (sda=8, scl=9)

print (lumi, temp, humi)
data=ustruct.pack('il6s3f', 1254, 'YOX31MOEDKOOJATK', lumi, temp, humi)
print (str(data))

esp.send (peer, data)

time.sleep(2)

deepsleep (6*1000)

The receiver side:

import network, espnow,ustruct
from machine import Pin
wlan = network.WLAN (network.STA_IF)
Activate the WLAN Interface
wlan.active (True)
if wlan.active():
Get the MAC address
mac_address = wlan.config("mac")
print (mac_address)
print ("Device MAC Address:", ":".join(["{:02X}".format (byte) for byte in mac_address]))
else:
print ("Wi-Fi is not active.")

A WLAN interface must be active to send()/recv()
sta = network.WLAN (network.STA_IF)
sta.active (True)
sta.config (txpower=5.0)
print ("Running on channel:", sta.config("channel"))
sta.disconnect () # Because ESP8266 auto-connects to last Access Point
e = espnow.ESPNow ()
e.active (True)
while True:
host, msg = e.recv()
if msg: # msg == None if timeout in recv()
channel, wkey, lumi, temp, humi=ustruct.unpack('il6s3f',msqg)
print (host, channel, wkey, lumi, temp, humi)

Low Power loT Architectures SmartComputerLab 5

e

time.sleep(2)
deepsleep(6*1000)

- peeve
25

26
2

110.16 23.04546 49.14145

b '\Xe6\x04\x00\X00Y0X31MOEDK0O JATK\ xecQ\xdcB\x1c]\Xxb8A\Xd8\x96DB"
ESP-ROM:esp32c3-apil-20210207

Build:Feb 7 2021

rst:0x5 (DSLEEP),boot:0xc (SPI_FAST_FLASH_BOOT)

SPIWP:0xee

mode:DIO, clock div:1l

load:@x3fcd5820, len: 0xf28

load:0x403cc710, lel
load:0x403ce710, len:
entry 0x403cc710
now active

110.16 23.04546 49.02701

b "\Xxe6\X04\Xx00\Xx00Y0X31MOEDKOO JATK\xecQ\xdcB\x1c] \xb8A\Xxa8\x1bDB"
ESP-ROM:esp32c3-apil-20210207

Build:Feb 7 2021

rst:0x5 (DSLEEP), boot:0xc (SPI_FAST_FLASH_BOOT)

SPIWP:0xee

mode:DIO, clock div:1

load:0x3fcd5820, len: 0xf28

load:0x403cc710, lel
load:0x403ce710, le
entry 0x403cc710
now active

& BF2.find_macpy

@ BF2.max44.sht21.oled.Ip.py

@) BF2.maxd4009.py

@ BF2.max44009g.py

& BF2.maxe4000g testpy

& BF2.now.sensors.term.toproxy.py

@ BF2.now_click_send_proxy.py

@) BF2.now_proxy_led_mqtt.py

&, BF2.now prowy sensors.mattpy

& BF2.now_recv_led.py

@ BF2.NTPserver.readpy

@) BF2.NTP.server_read.deep sleep.RTC. coutr

@ BF2.RTC.memery.counter.py
MicroPython device

&) 23NTP_server_deepsleep.py

& bootpy

& espnow.recvpy

& mainpy

& MQTT_sendpy

& network_connections py

& sensors.py

@ ThingSpeak_send.py

& wiifi_tools.py

25
26
27
28 while True:
29
30

e=
e.active(True)

if msg:

espnow.ESPNow()

host, msg = e.recv()

31 channel .wkev_Tumi _temn_humi=uctruct unnack('i16<3f' meal)

MPY: soft reboot

b'\xa@vNA\x05\xbe"
Device MAC Address:

b"\xa®vNC\x91P"'
b"\xa®vNC\x91P"'
b"\xa®vNC\x91P"'
b'\xa@vNC\x91P'
b'\xa@vNC\x91P'
b'\xa@vNC\x91P'
b'"\xa@vNC\x91P'
b'"\xa@vNC\x91P'
b'\xa@vNC\x91P"'
b'\xa@vNC\x91P"'
b'\xa@vNC\x91P'
b'\xa@vNC\x91P'
b'\xa@vNC\x91P'
b’ \xa@vNC\x91P'

Fig. 2.4 ESPNOW sender (sensors) and receiver terminals in Thonny IDE

1254
1254
1254
1254
1254
1254
1254
1254
1254
1254
1254
1254
1254
1254

AQ:76:4E:41:05:B0
Running on channel: 1

b'YOX31MOEDKOGJATK'
b'YOX31MOEDKOBJATK'
b'YOX31MOEDKOBJATK'
b'YOX31MOEDKOBJATK'
b'YOX31MOEDKOBJATK'
b'YOX31MOEDKOBJATK'
b'YOX31MOEDKOBJATK'
b'YOX31MOEDKOBJATK'
b'YOX31MOEDKOGJATK"'
b'YOX31MOEDKOGJATK"'
b'YOX31MOEDKOGJATK"'
b'YOX31MOEDKOGJATK"'
b'YOX31MOEDKOGJATK'
b'YOX31MOEDKOBJATK'

116.16
110.16
110.16
110.16
110.16
110.16
110.16
110.16
110.16
110.16
110.16
110.16
110.16
110.16

.01329
.01329
.04546
.03474
.01329
.02401
.01329
.03474
.03474
. 05619
.04546
.04546
.04546
.06692

.13327
.89676
.67496
.64499
.27115
.50766
.59921
.44662
L4537

.46188
.20248
.14145
.02701
.11856

Low Power loT Architectures

SmartComputerLab

2.2 ESP-NOW sensor data receiver and gateway to ThingSpeak server
The receiver node can be extended to operate as a gateway node between MAC-WiFi and standard Wi-Fi
communication links. In this configuration, the sender node must use the same Wi-Fi channel (frequency) that
is employed for regular communication between the gateway and the Wi-Fi access point.

The gateway is programmed to relay received packets to the MQTT server, using the topic value stored in
the wkey field. The IP address and port number of the MQTT server are known and configured at the
gateway level.

This gateway functionality enables transparent forwarding of data from non-IP or MAC-level links to IP-based loT
services while preserving a simple and energy-efficient terminal design.

sensors

Close Terminal

@eth, wifi channel

TS: channelfwkey sensor's data
MQTT: topic

ssid,pass

MAC-WiFi/WiFi gateway

@ip, n_port

Fig. 2.5 Close Terminal operating on MAC-WiFi layer and corresponding (peer) gateway node

import network, time, espnow, ustruct, urequests
from machine import Pin

def wifi_reset(): # Reset wifi to AP_IF off, STA_IF on and disconnected
sta = network.WLAN (network.STA_IF); sta.active (False)
ap = network.WLAN (network.AP_IF); ap.active(False)
sta.active (True)
sta.config (txpower=5.0)
while not sta.active():
time.sleep(0.1)
sta.disconnect () # For ESP8266
while sta.isconnected():
time.sleep(0.1)
return sta, ap

ThingSpeak API details
THINGSPEAK WRITE_API_KEY = 'YOX31MOEDKOOJATK' - this key is sent by the terminal
THINGSPEAK_URL = 'https://api.thingspeak.com/update'

Function to send data to ThingSpeak
def send_data_to_thingspeak (wkey, lumi, temp, humi):

try:
url = f£"{THINGSPEAK_URL}?api_key={wkey}&fieldl={lumi}&field2={temp}&field3={humi}"
response = urequests.get (url)
response.close ()
print ("Data sent to ThingSpeak:", lumi, temp, humi)

except Exception as e:
print ("Failed to send data:", e)

sta, ap = wifi_reset() # Reset wifi to AP off, STA on and disconnected

sta.connect ('Bbox—-9ECEBF79', '54347A3EA6A1D6C36EF6A9ES5156F7D"')

while not sta.isconnected(): # Wait until connected...
time.sleep(0.1)

sta.config(pm=sta.PM_NONE) # ..then disable power saving

print (sta.ifconfig())

Print the wifi channel used AFTER finished connecting to access point
print ("Proxy running on channel:", sta.config("channel"))

e = espnow.ESPNow(); e.active (True)

for peer, msg in e:

Low Power loT Architectures SmartComputerLab 7

while True:
host, data = e.recv()
if data:
chan, wkey,
print (host)

lumi, temp,

for_wkey="{:s}".format (wkey)

humi

= ustruct.unpack('il6és3f"',

data) # wkey may be topic

print ("wkey:"+str (for_wkey)+" lumi:"+str(lumi)+" temp:"+str(temp)+"
humi:"+str (humi))

msg= "lumi:"+str (lumi)+";
Send data to ThingSpeak
send_data_to_thingspeak (for_wkey, lumi,

Shell

entry 0x403cc710
now active
195.84 24.7293 45.13602
b'\xe6\x04\x00\x00Y0X31MOEDKOO JATKAXOb\Xxd7CCA\X9C\Xd5\XC5AH\X8b4B "
ESP-ROM: esp32¢3-apil-20210207
Build:Feb 7 2021
rst:0x5 (DSLEEP),boot:0xc (SPI_FAST_FLASH_BOOT)
SPIWP:0xee
mode:DIO, clock div:1l
loa x3fcd5820, len: 0xf28
load:0x403cc710, len:0x944
load:0x403ce710, len:0x2bic
entry 0x403cc710
now active
220.32 24.6864 44.55618
b'\xe6\x04\x00\x00Y0X31MOEDKOO JATKAXECQ\\CA\XCO}\XC5A\X8892B"
ESP-ROM: esp32c3-apil-20210207
Build:Feb 7 2021
rst:0x5 (DSLEEP),boot:0xc (SPI_FAST_FLASH_BOOT)
SPIWP:0xee
mode:DIO, clock div:1
x3fcd5820, len:0xf28
:10x403cc710, len:0x944
load:0x403ce710, len:0x2blc
entry 0x403cc710
now active
195.84 24.7293 44.54092
b'\xe6\x04\x00\x00Y0X31MOEDKOO JATK\X0b\xd7CC\Xx9c \xd5\XxC5A\xe8) 2B "

MicroPython device
& 23NTP_server_deepsleep.py
@ bootpy
@ espnowgateway_sensors py
@ espnowrecv.py
& mainpy
& MQTT_sendpy
@ network_connections.py
@ sensors.py
& Thingspeak sendpy
& wii_tools.py

temp:"+str (temp)+";

temp,

humi:"+str (humi)

humi)

print(host)

for_wkey="{:s}".format(wkey)

print("wkey: "+str(for_wkey)+" lumi:"+str(lumi)+" 1
msg= "lumi:"+str(lumi)+"; temp:"+str(temp)+"; hum

send_data_to_thingspeak(for_wkey,lumi, temp, humi

Shell
WKeY: YUX31MUEDKOUJATK LUM1:195.84 TEmMp:Z4.6/568 NUML:44.16/08
Data sent to ThingSpeak: 195.84 24.67568 44.16708
b'\xa@vNC\x91P'
wkey:YOX31MOEDKOOJATK 1lumi:220.32 temp:24.6864 humi:43.81613
Data sent to ThingSpeak: 220.32 24.6864 43.81613
b'\xa®vNC\x91P"'
wkey:YOX31MOEDKOOJATK 1umi:220.32 temp:24.65423 humi:43.83139
Data sent to ThingSpeak: 220.32 24.65423 43.83139
b'\xa@vNC\x91P"'
wkey:YOX31MOEDKOOJATK 1umi:195.84 temp:24.69713 humi:44.18997
Data sent to ThingSpeak: 195.84 24.69713 44.18997
b'\xa@VNC\x91P"'
wkey:YOX31MOEDKO®JATK 1lumi:220.32 temp:24.7293 humi:45.40305
Data sent to ThingSpeak: 220.32 24.7293 45.40305
b'\xa@vNC\x91P'
wkey:YOX31MOEDKOOJATK 1lumi:195.84 temp:24.7293 humi:45.13602
Data sent to ThingSpeak: 195.84 24.7293 45.13602
b'\xa@vNC\x91P'
wkey:YOX31MOEDKOOJATK lumi:220.32 temp:24.6864 humi:44.55618
Data sent to ThingSpeak: 220.32 24.6864 44.55618
b'\xa@vNC\x91P"'
wkey:YOX31MOEDKOQJATK 1lumi:195.84 temp:24.7293 humi:44.54092
Data sent to ThingSpeak: 195.84 24.7293 44.54092

Fig. 2.6 ESPNOW sender (sensors) and gateway terminals in Thonny IDE

To do

Analyze and implement the same example with your credentials for WiFi and ThingSpeak server. Note
that the terminal node sends the sensor’s data and the write key (wkey) to the ThingSpeak channel.

Add OLED display to your gateway node.

Low Power loT Architectures

SmartComputerLab 8

2.3 ESP-NOW - close terminal (sender) with Low Power adaptive
protocol

The following example introduces the same adaptive mechanisms previously presented for direct (Wi-Fi)
terminals. These mechanisms include dynamic adjustment of the cycle time (low-power stage duration) and
the delta parameter.

Note that the delta condition is intentionally separated from the threshold condition. This separation allows
the system to respond more rapidly to threshold-related events, which often require immediate action.
Initially, the SoC operates at a minimum clock frequency of 20 MHz to reduce power consumption. The
clock frequency is increased to a maximum of 160 MHz only during the transmission phase, where higher
processing and communication performance is required.

This dynamic frequency scaling further contributes to minimizing overall energy consumption while maintaining
responsiveness when necessary.

2.3.1 Adaptive sender code

import network, esp

from machine import Pin, deepsleep, freq

import espnow

import utime, ustruct

from sensors import *

from rtc_tools import *

from nvs_tools import *

nvs_key="param" # key to NVS records
led = Pin(3, Pin.OUT)

def connect_send_espnow (chan, wkey, lumi, temp, humi) :
freq(160000000) # maximum frequency
sta = network.WLAN (network.STA_IF) # Or network.AP_IF
#sta.disconnect ()
sta.active (True)
sta.config (txpower=5.0)
sta.config(channel=1) # must be provide from gateway channel
sta.disconnect () # For ESP8266
Initialize ESP-NOW
esp = espnow.ESPNow ()
esp.active (True)
print ("now active")
#peer= b'\x54\x32\x04\x0B\x3C\xF8' # Replace with receiver's MAC address
peer= b'\xFF\XFF\xXFF\xFF\xFF\XFF' # broadcast MAC address
esp.add_peer (peer)

data=ustruct.pack('il6és3f', chan,wkey, lumi, temp, humi)
esp.send (peer,data)
freq(20000000)

def main():
freq(20000000) # setting min frequency
print ("Reading ts from internal EEPROM...")
len,ts_rparam = read_nvs_ts (nvs_key)
if len:
ts_chan, ts_wkey=ustruct.unpack("ilés",ts_rparam)
print ("len:",len, "ts_chan:",ts_chan, "ts_wkey:",ts_wkey.decode())
len,pow_rparam = read_nvs_power (nvs_key)

if len:
cdef, cmax,dmin, dmax, tlow, thigh=ustruct.unpack ("2i4£f", pow_rparam)
print("len:",len,", cdef:",cdef,", cmax:",cmax,", dmin:",dmin,", dmax:",6dmax,",

tlow:",tlow,", thigh:",thigh)

ncycle, npos, nneg= rtc_load_param()

ssens= rtc_load_sensor(); sdelta= rtc_load_delta()
print ("ncycle:" +str(ncycle));

lumi, temp, humi = sensors(sda=8, scl=9)

print ("Luminosity:", lumi, "lux"); print ("Temperature:", temp, "C");print ("Humidity:", humi,
ll%ll)

print ("current: "+str(temp)+" saved: "+str(ssens)); # sensor is temperature

print (dmin, dmax, sdelta) ;

if abs(ssens-temp)>sdelta : # testing delta and thresholds

print ("data to SEND")
rtc_store_sensor (temp)
led.on()
if npos :
if ncycle > 2:
ncycle= int (ncycle/2)
else:
if sdelta< dmax:
sdelta = sdelta*2 # new delta

Low Power loT Architectures SmartComputerLab 9

rtc_store_delta(sdelta)

npos=npos+l; nneg=0 # positive and negative counters
rtc_store_param(ncycle, npos, nneg)

print (ts_wkey, lumi, temp, humi)
connect_send_espnow (ts_chan, ts_wkey, lumi, temp, humi)
print ("data packet sent");led.off ()

elif temp>thigh or temp<tlow :
ncycle=1; npos=0; nneg=0; rtc_store_param(ncycle, npos, nneg)
sdelta = dmin; rtc_store (sdelta)
print (ts_wkey, lumi, temp, humi)
connect_send_espnow (ts_chan, ts_wkey, lumi, temp, humi)
print ("urgent data packet sent");led.off()

else:
print ("data packet NOT sent")
if nneg :
if ncycle < cmax:
ncycle = int (ncycle*2) # maximum factor 64
else
if sdelta> dmin:
sdelta = sdelta/2
rtc_store_delta(sdelta)

npos=0; nneg=nneg+l
rtc_store_param(ncycle, npos, nneg)

time.sleep(0.5)

print (ncycle*cdef)

print (sdelta)

deepsleep (ncycle*cdef*1000)

main ()

& Lockvaxis @B is 3 108 imin | [10min h

U I I 1 O O 11 A

00:00:00 00:01:40 00:03:20 6 0:10:
e C 00 00.000

000.000 000.000 000.00¢

1.30ma 235.17ma 10:00m 0.78¢ 37.86ma 136.53ma 1.154s 43.69mc

average max time charge average max time charge

Fig 2.7 PPK2 10min diagram with 1low_power and high_power stages. Note low power (charge ~43.69mC)
consumption for high_power stage with transmission due to the direct transmission of WiFi frames at MAC
layer.

Low Power loT Architectures SmartComputerLab 10

	IoT Lab 2
	Building Close Terminals and Gateways with MAC-WiFi (ESP-NOW)
	2.1 Essential Features of ESP-NOW
	2.1 Simple sender and receiver nodes
	2.1.1 ESP-NOW simple sender
	2.1.2 ESP-NOW simple receiver
	2.1.3 ESP-NOW sender – sensor’s values

	2.2 ESP-NOW sensor data receiver and gateway to ThingSpeak server
	2.3 ESP-NOW – close terminal (sender) with Low Power adaptive protocol
	2.3.1 Adaptive sender code

