
IoT Lab 0

IoT Architectures

0.1 Introduction
In this preparation, we introduce several core concepts and principles used to design low-power IoT
architectures. We then present our IoT platform, including its hardware, firmware, and software
components. This platform is used to implement IoT functionalities in line with the principles presented.
First, let’s look at the overall communication and operational space involving IoT terminals (end devices),
routers, gateways, and servers.

In an IoT architecture, these network components work together to enable communication, data processing, and
system control:

Terminals (IoT Devices / End Nodes)
Terminals collect sensor data and/or perform actions (actuation). Some devices also run lightweight local
processing (for example, filtering, thresholding, or simple analytics) before transmitting data. They typically send
data to an IoT router, an IoT gateway, or directly to the cloud using connectivity such as Wi-Fi or cellular
networks.

Routers
Routers forward packets between networks (for example, from a local area network to a wide area network).
They generally rely on standard IP networking and routing mechanisms.

Gateways (IoT Gateways)
Gateways act as a bridge between IoT devices and Internet infrastructure. They often translate data from IoT-
oriented protocols into standard IP-based protocols. In addition, gateways may filter, aggregate, and
compress data before forwarding it to cloud services, reducing bandwidth usage and improving efficiency.

Servers (IoT Cloud Servers)
Servers store, process, and manage IoT data. In our case, we use lightweight MQTT servers (brokers) as well
as full IoT cloud platforms such as ThingSpeak for visualization, analytics, and application integration.

Key considerations
The main design constraints in IoT networks include:

• Low power consumption and low latency
• Scalability (supporting many devices and data flows)
• Security (confidentiality, integrity, authentication)
•

A particularly important requirement is terminal identification and addressing, which ensures that each
device can be uniquely recognized, securely authenticated, and correctly routed within the system.

Low Power IoT Architectures SmartComputerLab 1

0.2 Global IoT space , IoT Sockets and data “streams”

Fig.0.1 Global IoT space

The global IoT space model is associated to the concept of IoT Socket.

Fig.0.2 IoT Socket and Terminal/Gateway identifier

In our approach, an IoT socket is defined as a triple composed of an IP address, a service port, and a
channel number. These elements correspond respectively to the addressing identifiers at:

• Layer 3 (IP address),
• Layer 4 (transport port),
• Layer 5 (application channel).

Low Power IoT Architectures SmartComputerLab 2

The channel itself is structured into several fields, where each field carries a single sensor (or actuator) data
stream. The channel number uniquely identifies the terminal or gateway, and in the case of gateways, it may
also act as a control channel identifier.

IoT Architecture Overview
The proposed IoT architecture includes several types of nodes:

• Direct terminals
• Remote terminals
• Close terminals
• Gateways
• IoT servers

Direct terminals are connected directly to the Internet infrastructure using Wi-Fi or cellular (4G/5G) radio links
and operate using the IP protocol stack.

Remote terminals and close terminals communicate through gateways (for example, LoRa–WiFi or
WiFiMAC–WiFi gateways). These terminals do not use IP directly.

Identification and Communication Model
Remote and close terminals are identified only by their channel number on the corresponding IoT server.
Gateways, on the other hand:

• Know the IP address and port number of the IoT server,
• Do not know the server’s data channel numbers,
• May use an additional control channel on the server to receive configuration and control parameters.

Data Streams and Compression
Each IoT channel can carry and optionally store up to eight independent data streams.
Each stream corresponds to a specific sensor or actuator associated with a terminal node.

The proposed IoT data compression protocol operates independently on each data stream.
Its goal is to minimize the number of data packets transmitted over communication links such as Wi-Fi,
WiFiMAC, or LoRa.

This operational mode can be described as an ALAP protocol — As Little As Possible — emphasizing minimal
communication overhead and reduced power consumption.

The control of this mechanism (protocol) is done via three types of parameters:

• delta – the value of the delta parameter indicates the minimum distance between the last sent and the
current sensor value. Note that the delta value my indicate the absolute difference (ex. 0.1°C or relative
difference , ex. 0.1%)

• cycle – indicates the time period between two consecutive sensor reads and eventual packet
transmission

• t_high,t_low – indicate the high and low threshols

Low Power IoT Architectures SmartComputerLab 3

Fig.0.3 Simple IoT Architecture with Direct Terminal and its parameters

In the figure above, we illustrate a simple IoT architecture featuring a direct terminal.
To transmit a data packet, the direct terminal must know:

• The SSID and password credentials required to establish a communication link with the access point
(AP),

• The complete IoT socket, which includes the IP address, port number, and channel number, along
with the associated write key.

The next figure presents the essential parameters required to establish communication links and transfer sensor
data from a remote terminal to the IoT server. In this case, the data packets (payloads) transmitted by the
remote terminal are protected using 128-bit AES encryption.
Access to the IoT channel itself is secured through write and read keys (16 bytes), ensuring controlled and
secure data transmission and retrieval.

Fig.0.4 IoT Architecture: Remote or Close Terminal and Gateway parameters

For example, to transmit a data packet, a remote terminal only needs to know:

• The associated channel number, which also serves as the terminal’s unique identifier (address),
• The write key for the channel,
• The AES key used to encrypt the packet payload.

Importantly, remote terminals do not know the IP address or port number of the corresponding IoT server.
These elements of the IoT socket are known only to the gateway.
In addition, when the gateway uses a Wi-Fi access point, it must know the SSID and password of that access
point in order to establish Internet connectivity. The gateway must also know the AES key in order to decrypt
incoming LoRa packets received from remote terminals.

Low Power IoT Architectures SmartComputerLab 4

Fig.0.5 IoT Architecture: Direct, Close and Remote Terminals and Gateway to the IoT server

Low Power IoT Architectures SmartComputerLab 5

0.3 Low and Very Low Power consumption IoT components
Low power consumption is a fundamental requirement in the design of IoT architectures that rely on
autonomous terminal nodes, including both direct and remote terminals.

At the heart of low-power IoT devices is the IoT system-on-chip (SoC) and its ability to operate in ultra-low-
power modes, such as deep sleep. In these modes, the device can remain operational while consuming as
little as 10–20 µA of current.

Building on this capability, it is possible to design IoT devices with an average current consumption of less
than 1 mA (low power), or even below 100 µA (very low power), depending on the duty cycle, communication
technology, and application requirements.

Fig.0.6 Levels of power (current) consumption: ULP-ultra low, VLP – very low, and LP – low power consumption

As an example, consider a device with an ultra-low-power (ULP) current consumption of 10 µA while operating
in deep-sleep mode (low-power stage) for 100 s.
Assume that the device then enters an active period (high-power stage) with a current consumption of 40 mA
lasting 0.5 s.

Together, the low-power and high-power stages form a complete operational cycle.

The question is: what is the average current consumption over this cycle?

To answer this, we begin by calculating the total electrical charge consumed during the cycle:

low_power charge + high_power charge= 10µA*100s + 40 000µA*0.5s = 1000µC+20000µC= 21mC

The average current is:
average_current = charge/time = 21mC/100.5s = 0.21mA = 210µA

To do:
Calculate the same for low_power stage duration of 600s.

Low Power IoT Architectures SmartComputerLab 6

0.4 Memory hierarchy for data, parameters and meta-parameters
One of the essential features for designing low-power IoT protocols, and in particular adaptive low-power
IoT protocols, is the availability of multiple types and levels of memory.

These typically include main SRAM, low-power SRAM, and internal or external EEPROM memory units.

The following figure illustrates the memory hierarchy exploited by low-power protocols to optimize energy
consumption, data retention, and system responsiveness.

Fig.0.7 Memory types and hierarchy used in IoT SoC, board and DevKit.

The above memory hierarchy operates in high_power and low_power stages. In the

0.5 Terminals - Operational modes
The primary goal of IoT architectures is to transmit sensor data from terminal nodes to their corresponding
IoT servers (channels). There are many ways to capture physical phenomena (sensing) and transmit the
resulting data over communication links. These approaches depend on the type of sensor and its specific
operational characteristics.
Terminal nodes typically operate in cycles. The cycle duration (or frequency) may be fixed in the terminal’s
program code, or it can be dynamically modified based on new parameters provided by the gateway.
In some cases, the cycles are asynchronous. This occurs when an external event (such as an interrupt or
trigger) initiates a new operational cycle.

Low Power IoT Architectures SmartComputerLab 7

Often, the captured sensor values undergo a pre-processing phase before being transmitted (or possibly
discarded) by the terminal. This pre-processing typically involves:

• Comparing current sensor values with previously transmitted values,
• Evaluating differences against predefined thresholds associated with each sensing parameter.

The sensing, pre-processing, data transmission, and data reception activities are performed during
phases that correspond to the high-power consumption stage (H).
To significantly reduce overall energy consumption, the system makes use of deep-sleep modes, which
introduce a low-power stage (L). For example, the average current in the high-power stage may reach 150 mA,
whereas in the low-power stage it can be reduced to as little as 20 µA.

It is important to note that when the high-power stage does not include packet transmission or reception, the
average current consumption can be significantly lower, around 20 mA, or even 2.5 mA when using ultra-low-
power RISC-V cores.

In this context, it becomes clear that reducing power consumption primarily relies on extending the operational
cycle duration (i.e., lowering the activity frequency) and maximizing the time spent in the low-power stage (L).

Fig.0.8 Basic operational modes (cycles) including high_power stages (H) with up to 5 phases and
low_power stages (L). Note: SL cyclical-sporadic mode may be driven by an additional ULP RISC-V
processor operating with its own execution cycle and calculating delta and threshold values to be used to wake
up the main processor. This feature adds the capacity of very low power pre-processing of sensor data.

Low Power IoT Architectures SmartComputerLab 8

0.6 Cyclical (adaptive) mode with parameters and meta-parameters
The following figure illustrates the use of different memory types during the consecutive phases of the high-
power stage.
During the initialization phase, the interpreter and user program modules are loaded into main SRAM from
external EEPROM/flash memory located outside the SoC. Next, the system reads the meta-parameters
either from the external EEPROM module or, if unavailable, from the internal non-volatile storage (NVS
EEPROM). The runtime parameters are retrieved from RTC SRAM.
In the subsequent sensing phase, sensor data are acquired. During the processing phase, these data are
processed using both the meta-parameters and the current runtime parameters. Any newly computed
parameters are then stored back into RTC memory for persistence across sleep cycles.

Depending on the application logic, the system may then proceed to the transmission phase:

• For a direct terminal, data are transmitted directly to the IoT server via a Wi-Fi connection.
• For a close terminal, data are sent to a Wi-Fi router using Wi-Fi MAC-layer frames.
• For a remote terminal, data packets are transmitted over a LoRa channel to a LoRa–WiFi gateway.

In this case, the data packets are protected using AES encryption, typically accelerated by hardware
cryptographic units available in the SoC.

•
After transmission, the system may enter a reception phase, during which it waits for acknowledgment (ACK)
packets sent by the gateway. Two types of ACK packets can be distinguished:

• Simple ACK packets, confirming successful reception,
• Control ACK packets, which may carry updated meta-parameter values.
•

All ACK packets are also encrypted to ensure secure communication.

Fig.0.9 Cycle phases and the use of different memory types

Low Power IoT Architectures SmartComputerLab 9

0.7 From SoC to an IoT Platform
The essential components of IoT systems are typically built around a SoC (System on Chip) or a SoM
(System on Module). These components integrate processing units, communication modems, and I/O
interfaces into a compact and energy-efficient solution.

A typical ESP32 SoC integrates one or two CPUs (such as Xtensa LX6, LX7, or RISC-V RV32 cores). These
SoCs also include wireless communication modems such as Wi-Fi, Bluetooth, and Zigbee/Thread, and
expose a variety of serial interfaces for connecting external components.
As a result, ESP32-based boards are well suited for building direct terminals using Wi-Fi connectivity.
Depending on the application design and duty cycle, they can achieve low or even very low power
consumption.

Another category of components consists of SoMs, such as the ASR560X from ASR Microelectronics. These
modules integrate ultra-low-power CPUs (e.g., ARM Cortex-M0) together with LoRa modems such as the
SX1262. ASR560X-based solutions are particularly suitable for building very low-power remote terminals
using LoRa radio links.

IoT Boards and Development Kits
IoT boards typically combine an IoT SoC or SoM with external components such as:

• EEPROM or flash memory,
• USB-to-TTY interfaces,
• Battery charging and power conversion circuits,
• Status LEDs,
• GPIO and expansion connectors.
•

We build our IoT development kits (DevKits) around boards such as:

• Heltec ESP32-C3,
• ASR01,
• DFRobot ESP32-C6.
•

These DevKits provide additional hardware elements, including batteries, solar panels, radio modems (e.g.,
SX1276/SX1278), GPIO headers, and serial bus connectors. They are designed to interface easily with a wide
range of sensors and actuators.

Firmware, Software, and Platforms
An IoT platform completes the underlying hardware layers by providing firmware and software support. IoT
applications can be developed using C/C++ and/or MicroPython programming environments.
These environments are complemented by the required drivers, protocol stacks, and software libraries.
In this study, we use several categories of SoCs, boards, DevKits, and platforms:

1. RISC-V–based platforms

• ESP32-C3 or ESP32-C6 SoCs
• MicroPython programming
• Thonny IDE

2. LoRa-based ultra-low-power platforms

• ARM Cortex-M0 with SX1262 modem
• CubeCell (CC) boards and DevKits
• C/C++ programming using the Arduino IDE

In both cases, power consumption is analyzed using the PPK II Power Profiler from Nordic Semiconductor.

Low Power IoT Architectures SmartComputerLab 10

 Fig 0.10 (a) IoT Platform(s) for the experimentation/development of Low and Very Low Power consumption
IoT Architectures. (b) From platforms to Applications

Fig 0.11 IoT ESP32C3 SoC - architecture block diagram

Low Power IoT Architectures SmartComputerLab 11

Fig 0.12 IoT ESP32C3 SoC, HT Board, and DevKit for the experimentation/development of Low and Very
Low Power consumption IoT Architectures. The board is mounted on the top of RISC-V SBC with SpacemiT –
K1 SoC.

The firmware/software “layers” are developed with µPython using Thonny IDE.
Let us ask ChatGPT about Thonny IDE and µPython. Note that we do not need to indicate the use of
ESP32 familly of SOCs.

0.8 What is Thonny
Thonny IDE is a lightweight, beginner-friendly integrated development environment (IDE) designed for
programming in Python. It is particularly well-suited for beginners due to its simplicity, clean interface, and easy-
to-use features. In addition to regular Python programming, Thonny has excellent support for MicroPython,
making it a popular choice for programming microcontrollers and IoT devices such as ESP8266, ESP32, and
Raspberry Pi Pico.
Thonny makes it easy to develop, deploy, and test code on MicroPython-compatible devices. It has built-in tools
to communicate with microcontrollers, upload scripts, and monitor real-time output from IoT devices.

Features of Thonny for MicroPython:
• Simple Interface: Easy-to-navigate interface for beginners.
• MicroPython Support: Built-in support for MicroPython, making it easy to flash firmware and upload

code to devices like ESP32/ESP8266.
• Interactive Python Shell: Interactive REPL (Read-Eval-Print-Loop) for running Python commands

directly on the microcontroller.
• File System Management: Allows you to manage files on the microcontroller's file system, such as

uploading and downloading scripts.
• Serial Monitor: Communicates with the microcontroller via a serial connection, allowing you to debug

and observe output from the device.
• Code Debugging: Provides simple debugging tools like stepping through code and viewing variable

values.

How to Use Thonny IDE to Program IoT Devices with MicroPython
Below is a step-by-step guide on how to use Thonny IDE to program IoT devices with MicroPython, particularly
focusing on ESP32/ESP8266 and Raspberry Pi Pico.

Low Power IoT Architectures SmartComputerLab 12

1. Install Thonny IDE
• Download and install Thonny from the official website (https://thonny.org/).

• Thonny is available for Windows, macOS, and Linux.
• During installation, you can opt to install Python alongside Thonny if it's not already installed on your

system.

2. Set Up Thonny for MicroPython
Once Thonny is installed, you need to configure it for MicroPython development.

• Choose the MicroPython Interpreter:
• Open Thonny.
• Go to the menu: Tools > Options > Interpreter.
• From the "Interpreter" drop-down list, select the appropriate MicroPython interpreter for your

board:
• For ESP32 or ESP8266: Select MicroPython (ESP32) or MicroPython (ESP8266).
• For Raspberry Pi Pico: Select MicroPython (Raspberry Pi Pico).

• Choose the correct serial port (COM port on Windows or /dev/ttyUSBx on Linux/macOS)
that your microcontroller is connected to.

3. Install MicroPython Firmware on the IoT Device
Before you can start programming, you need to flash MicroPython firmware onto your IoT device (if it’s not
already installed). The process differs slightly based on your microcontroller.

For ESP32:

• Download the MicroPython firmware for your board from the official MicroPython website.
• ESP8266: Get the .bin file for ESP8266.
• ESP32: Get the .bin file for ESP32.

• Flash the Firmware:
• Connect your ESP32/ESP8266 board to your computer via USB.
• In Thonny, go to Tools > Options > Interpreter.
• Click the "Install or update firmware" button.
• In the "Install MicroPython" dialog:

• Select the target port (your board’s COM port).
• Select the MicroPython variant (ESP32 or ESP8266).
• Click the Install button to flash the firmware onto the board.

4. Writing and Uploading MicroPython Code
Once the MicroPython firmware is installed on your IoT device, you can start writing code using Thonny.
Example: Blinking an LED on ESP32

• Open Thonny and write the following code in the editor:

from machine import Pin
from time import sleep
led = Pin(3, Pin.OUT)
Blink the LED
while True:
 led.on()
 sleep(1)
 led.off()
 sleep(1)

• Click the Run button (green arrow) or press F5.
• Thonny will automatically upload the code to the microcontroller and start running it.
• You should see the LED blinking on the device.
•

Serial Monitor and REPL:
• Thonny provides access to the MicroPython REPL in the terminal at the bottom of the window.

Low Power IoT Architectures SmartComputerLab 13

https://thonny.org/

• You can enter commands directly and get instant feedback.
• Example: Type led.on() in the REPL, and the LED will turn on immediately.
•

5. File Management
Thonny allows you to manage the files on your microcontroller’s file system.

• Upload a Script:
• Write a script (e.g., main.py) and save it directly to the device by selecting File > Save As and

choosing "MicroPython Device" as the location.
• Files saved on the device can run automatically on startup if named main.py or boot.py.

• List Files on the Device:
• Use the Files pane in Thonny (located on the right) to see the files stored on your MicroPython

device.
• You can add, remove, or download files from the microcontroller.

6. Debugging and Monitoring Output
Thonny has basic debugging features that are useful when developing IoT applications:

• You can use breakpoints and step-through execution to check how the code behaves on the
microcontroller.

• The serial monitor (or REPL) at the bottom of the IDE can display output from print() statements in
your code, making it useful for debugging.

Example of Signal Output:

from machine import Pin
from time import sleep
led = Pin(3, Pin.OUT)
while True:
 led.on()
 print("LED is ON")
 sleep(1)
 led.off()
 print("LED is OFF")
 sleep(1)

• The print() statements will show up in the Thonny terminal as the program runs, helping you verify
the behavior.

7. Advanced Features in Thonny
• Code Assistance: Thonny provides code completion and hints to help write MicroPython code faster.
• Graphical Output: If your code generates data (such as sensor readings), Thonny has support for

displaying graphical plots using matplotlib or similar libraries.
• External Libraries: You can upload external Python libraries (e.g., sensor drivers) to the MicroPython

device using the Files pane.
•

Typical Use Cases for IoT with Thonny and MicroPython
1. Sensor Data Collection: Program an ESP32 or Raspberry Pi Pico to read data from sensors (e.g.,

temperature, humidity) and log or transmit it via Wi-Fi or Bluetooth.
2. Home Automation: Write MicroPython scripts to control IoT devices like smart lights, door locks, or

relays based on sensor input or remote commands.
3. Wireless Communication: Use MicroPython to send sensor data to the cloud using protocols like

MQTT or HTTP via Wi-Fi-enabled microcontrollers (e.g., ESP32).
4. Prototyping IoT Projects: Thonny’s ease of use makes it ideal for quickly prototyping IoT devices and

testing them in real-time.

Low Power IoT Architectures SmartComputerLab 14

Fig.0.13a Thonny IDE – Options: MicroPython with ESP32 Interpreter, Serial port: USB0

Now if the MicroPython firmware is not flashed on the board go to: Install or update. Then choose the type of
the board : ESP32-C3 , local file, and look for the available firmware version, generic or prepared for your
board. (click on = button) After these operations (flushing and loading) you should find the following windows
with MicroPython device including only the boot.py module.

Fig.0.13b Thonny IDE with 4 windows: files on your PC, files on your Micropython Device (HT board), editor
window, terminal window with python prompt >>>. The edited files may be saved on your PC or on the Device
(board).

Low Power IoT Architectures SmartComputerLab 15

Fig.0.13c Thonny IDE with 4 windows: files on your PC, files on your Micropython Device (HT board), editor
window, terminal window with python prompt

Low Power IoT Architectures SmartComputerLab 16

	0.1 Introduction
	Terminals (IoT Devices / End Nodes)
	Routers
	Gateways (IoT Gateways)
	Servers (IoT Cloud Servers)
	Key considerations
	0.2 Global IoT space , IoT Sockets and data “streams”
	IoT Architecture Overview
	Identification and Communication Model
	Data Streams and Compression

	0.3 Low and Very Low Power consumption IoT components
	0.4 Memory hierarchy for data, parameters and meta-parameters
	0.5 Terminals - Operational modes
	0.6 Cyclical (adaptive) mode with parameters and meta-parameters
	0.7 From SoC to an IoT Platform
	IoT Boards and Development Kits
	Firmware, Software, and Platforms

	0.8 What is Thonny

