loT Lab 0

loT Architectures

0.1 Introduction

In this preparation, we introduce several core concepts and principles used to design low-power loT
architectures. We then present our loT platform, including its hardware, firmware, and software
components. This platform is used to implement loT functionalities in line with the principles presented.

First, let’s look at the overall communication and operational space involving loT terminals (end devices),
routers, gateways, and servers.

In an loT architecture, these network components work together to enable communication, data processing, and
system control:

Terminals (loT Devices / End Nodes)

Terminals collect sensor data and/or perform actions (actuation). Some devices also run lightweight local
processing (for example, filtering, thresholding, or simple analytics) before transmitting data. They typically send
data to an loT router, an loT gateway, or directly to the cloud using connectivity such as Wi-Fi or cellular
networks.

Routers

Routers forward packets between networks (for example, from a local area network to a wide area network).
They generally rely on standard IP networking and routing mechanisms.

Gateways (loT Gateways)

Gateways act as a bridge between loT devices and Internet infrastructure. They often translate data from loT-
oriented protocols into standard IP-based protocols. In addition, gateways may filter, aggregate, and
compress data before forwarding it to cloud services, reducing bandwidth usage and improving efficiency.

Servers (loT Cloud Servers)

Servers store, process, and manage loT data. In our case, we use lightweight MQTT servers (brokers) as well
as full loT cloud platforms such as ThingSpeak for visualization, analytics, and application integration.

Key considerations
The main design constraints in loT networks include:

* Low power consumption and low latency

» Scalability (supporting many devices and data flows)

» Security (confidentiality, integrity, authentication)
A particularly important requirement is terminal identification and addressing, which ensures that each
device can be uniquely recognized, securely authenticated, and correctly routed within the system.

Low Power loT Architectures SmartComputerLab 1

0.2 Global loT space , loT Sockets and data “streams”

wep= ‘B

IP-Thing

INTERNET mfrastructure
‘! IP-Thing “ -

BT g

Fig.0.1 Global loT space

The global loT space model is associated to the concept of loT Socket.

A channel

loT socket
@IP:port_n:channel

@IP
e

port_n

loT socket
192.168.1.100:8866:123456+fields

Fig.0.2 IoT Socket and Terminal/Gateway identifier

In our approach, an loT socket is defined as a triple composed of an IP address, a service port, and a
channel number. These elements correspond respectively to the addressing identifiers at:

» Layer 3 (IP address),

» Layer 4 (transport port),
+ Layer 5 (application channel).

Low Power loT Architectures SmartComputerLab 2

The channel itself is structured into several fields, where each field carries a single sensor (or actuator) data
stream. The channel number uniquely identifies the terminal or gateway, and in the case of gateways, it may
also act as a control channel identifier.

loT Architecture Overview
The proposed loT architecture includes several types of nodes:

* Direct terminals

* Remote terminals
* Close terminals

+ Gateways

* loT servers

Direct terminals are connected directly to the Internet infrastructure using Wi-Fi or cellular (4G/5G) radio links
and operate using the IP protocol stack.

Remote terminals and close terminals communicate through gateways (for example, LoRa-WiFi or
WiFiIMAC-WiFi gateways). These terminals do not use IP directly.

Identification and Communication Model
Remote and close terminals are identified only by their channel humber on the corresponding loT server.
Gateways, on the other hand:

» Know the IP address and port number of the loT server,
* Do not know the server’s data channel numbers,
* May use an additional control channel on the server to receive configuration and control parameters.

Data Streams and Compression

Each loT channel can carry and optionally store up to eight independent data streams.
Each stream corresponds to a specific sensor or actuator associated with a terminal node.

The proposed loT data compression protocol operates independently on each data stream.
Its goal is to minimize the number of data packets transmitted over communication links such as Wi-Fi,
WIFiMAC, or LoRa.

This operational mode can be described as an ALAP protocol — As Little As Possible — emphasizing minimal
communication overhead and reduced power consumption.

The control of this mechanism (protocol) is done via three types of parameters:

* delta - the value of the delta parameter indicates the minimum distance between the last sent and the
current sensor value. Note that the delta value my indicate the absolute difference (ex. 0.1°C or relative
difference , ex. 0.1%)

* cycle - indicates the time period between two consecutive sensor reads and eventual packet
transmission

* t_high, t_low - indicate the high and low threshols

Low Power loT Architectures SmartComputerLab 3

@IP, port,

ssid, pass channel,
wkey, rkey

@IP, port,

channel,

wkey, rkey

ssid, pass
«* ;4 ThingSpeak

Fig.0.3 Simple loT Architecture with Direct Terminal and its parameters

In the figure above, we illustrate a simple loT architecture featuring a direct terminal.
To transmit a data packet, the direct terminal must know:

» The SSID and password credentials required to establish a communication link with the access point
(AP),

» The complete lIoT socket, which includes the IP address, port number, and channel number, along
with the associated write key.

The next figure presents the essential parameters required to establish communication links and transfer sensor
data from a remote terminal to the IoT server. In this case, the data packets (payloads) transmitted by the
remote terminal are protected using 128-bit AES encryption.

Access to the loT channel itself is secured through write and read keys (16 bytes), ensuring controlled and
secure data transmission and retrieval.

LoRa par Remote Terminal <: channel,
AES key RT wkey, rkey
@IP, port,
ssid, pass channel,
wkey, rkey

LoRa par @Ip, port
AES key

Fig.0.4 IoT Architecture: Remote or Close Terminal and Gateway parameters

For example, to transmit a data packet, a remote terminal only needs to know:

» The associated channel nhumber, which also serves as the terminal’s unique identifier (address),
» The write key for the channel,
* The AES key used to encrypt the packet payload.

Importantly, remote terminals do not know the IP address or port number of the corresponding loT server.
These elements of the 10T socket are known only to the gateway.

In addition, when the gateway uses a Wi-Fi access point, it must know the SSID and password of that access
point in order to establish Internet connectivity. The gateway must also know the AES key in order to decrypt
incoming LoRa packets received from remote terminals.

Low Power loT Architectures SmartComputerLab 4

DT - direct terminal

> :
S

sensors WiFi - Router

’ MAC-WiFi
N

RT - remote terminal

Thing in Cloud
(channel)

CT - close terminal

WiFi

€ == >

sensors LoRa/WiFi - Gateway

’ iFi

Fig.0.5 loT Architecture: Direct, Close and Remote Terminals and Gateway to the loT server

Low Power loT Architectures SmartComputerLab

0.3 Low and Very Low Power consumption loT components

Low power consumption is a fundamental requirement in the design of loT architectures that rely on
autonomous terminal nodes, including both direct and remote terminals.

At the heart of low-power IoT devices is the loT system-on-chip (SoC) and its ability to operate in ultra-low-
power modes, such as deep sleep. In these modes, the device can remain operational while consuming as

little as 10-20 pA of current.

Building on this capability, it is possible to design loT devices with an average current consumption of less

than 1 mA (low power), or even below 100 pA (very low power), depending on the duty cycle, communication
technology, and application requirements.

ULP <10 pA
VLP < 100 pA

LP < 1000 pA

Fig.0.6 Levels of power (current) consumption: ULP-ultra low, VLP - very low, and LP - low power consumption

As an example, consider a device with an ultra-low-power (ULP) current consumption of 10 pA while operating
in deep-sleep mode (low-power stage) for 100 s.

Assume that the device then enters an active period (high-power stage) with a current consumption of 40 mA
lasting 0.5 s.

Together, the low-power and high-power stages form a complete operational cycle.
The question is: what is the average current consumption over this cycle?
To answer this, we begin by calculating the total electrical charge consumed during the cycle:

low_power charge + high_power charge= 10pA*100s + 40 000pA*0.5s = 1000uC+20000uC=21mC

The average current is:
average_current = charge/time = 21mC/100.5s = 0.21mA = 210pA

To do:

Calculate the same for low_power stage duration of 600s.

Low Power loT Architectures SmartComputerLab 6

0.4 Memory hierarchy for data, parameters and meta-parameters

One of the essential features for designing low-power loT protocols, and in particular adaptive low-power
loT protocols, is the availability of multiple types and levels of memory.

These typically include main SRAM, low-power SRAM, and internal or external EEPROM memory units.

The following figure illustrates the memory hierarchy exploited by low-power protocols to optimize energy
consumption, data retention, and system responsiveness.

at24Cxx external permanent values

EEPROM meta-parameters

base_cycle, max_cycle, min_delta,
max_delta, thresholds, ...

internal permanent values
meta-parameters
base_cycle, max_cycle, min_delta,
max_delta, thresholds, ...

low_power stage
parameters
sensors states, cycle factor, delta factor,...

high_power stage: program
static/dynamic data
sensor values, transmission buffers, ...

interpreter
predefined modules - tools,
application modules

Fig.0.7 Memory types and hierarchy used in loT SoC, board and DevKit.

The above memory hierarchy operates in high_power and low_power stages. In the

0.5 Terminals - Operational modes

The primary goal of loT architectures is to transmit sensor data from terminal nodes to their corresponding
loT servers (channels). There are many ways to capture physical phenomena (sensing) and transmit the
resulting data over communication links. These approaches depend on the type of sensor and its specific
operational characteristics.

Terminal nodes typically operate in cycles. The cycle duration (or frequency) may be fixed in the terminal’s
program code, or it can be dynamically modified based on new parameters provided by the gateway.

In some cases, the cycles are asynchronous. This occurs when an external event (such as an interrupt or
trigger) initiates a new operational cycle.

Low Power loT Architectures SmartComputerLab 7

Often, the captured sensor values undergo a pre-processing phase before being transmitted (or possibly
discarded) by the terminal. This pre-processing typically involves:

» Comparing current sensor values with previously transmitted values,
» Evaluating differences against predefined thresholds associated with each sensing parameter.

The sensing, pre-processing, data transmission, and data reception activities are performed during
phases that correspond to the high-power consumption stage (H).

To significantly reduce overall energy consumption, the system makes use of deep-sleep modes, which
introduce a low-power stage (L). For example, the average current in the high-power stage may reach 150 mA,
whereas in the low-power stage it can be reduced to as little as 20 pA.

It is important to note that when the high-power stage does not include packet transmission or reception, the
average current consumption can be significantly lower, around 20 mA, or even 2.5 mA when using ultra-low-
power RISC-V cores.

In this context, it becomes clear that reducing power consumption primarily relies on extending the operational
cycle duration (i.e., lowering the activity frequency) and maximizing the time spent in the low-power stage (L).

optional

high_power H-cyclical high_power

optional

high_power HD-cyclical (delta-dependent) high_power ‘

H

init sens proc send recv

low_power® SL-cyclical (sporadic) high_power®®
low_power HL-cyclical high_power high_power

Low_power HLD-cyclical (delta dependent) high_power®

Fig.0.8 Basic operational modes (cycles) including high_power stages (H) with up to 5 phases and
low_power stages (L). Note: SL cyclical-sporadic mode may be driven by an additional ULP RISC-V
processor operating with its own execution cycle and calculating delta and threshold values to be used to wake
up the main processor. This feature adds the capacity of very low power pre-processing of sensor data.

Low Power loT Architectures SmartComputerLab 8

0.6 Cyclical (adaptive) mode with parameters and meta-parameters

The following figure illustrates the use of different memory types during the consecutive phases of the high-
power stage.

During the initialization phase, the interpreter and user program modules are loaded into main SRAM from
external EEPROM/flash memory located outside the SoC. Next, the system reads the meta-parameters
either from the external EEPROM module or, if unavailable, from the internal non-volatile storage (NVS
EEPROM). The runtime parameters are retrieved from RTC SRAM.

In the subsequent sensing phase, sensor data are acquired. During the processing phase, these data are
processed using both the meta-parameters and the current runtime parameters. Any newly computed
parameters are then stored back into RTC memory for persistence across sleep cycles.

Depending on the application logic, the system may then proceed to the transmission phase:

* For a direct terminal, data are transmitted directly to the loT server via a Wi-Fi connection.
+ For a close terminal, data are sent to a Wi-Fi router using Wi-Fi MAC-layer frames.
» For a remote terminal, data packets are transmitted over a LoRa channel to a LoRa-WiFi gateway.
In this case, the data packets are protected using AES encryption, typically accelerated by hardware
cryptographic units available in the SoC.
After transmission, the system may enter a reception phase, during which it waits for acknowledgment (ACK)
packets sent by the gateway. Two types of ACK packets can be distinguished:

+ Simple ACK packets, confirming successful reception,
+ Control ACK packets, which may carry updated meta-parameter values.

All ACK packets are also encrypted to ensure secure communication.

e enter
'@‘r' -» high power
—r stage

read meta-parameters from
external EEPROM
\ 4

read meta-parameters from
internal EEPROM,- NVS

initialization

read parameters.from

RTC SRAM
: T A
read *entnseuses > . : sensing
----------- » - o
v \ A
read parameters from .

RTC SRAM
process sensor data with
parameters and
meta-parameters

processing

modify the parameters
write back to RTC SRAM

encrypt o
: send data packets = transmission
conditional send (ornof) T » wait v
- data packets € recv ACK packets reception
receive ACK packets decrypt

v

init T
low_power stage -+ H

RTC timer Ve

Fig.0.9 Cycle phases and the use of different memory types

Low Power loT Architectures SmartComputerLab 9

0.7 From SoC to an loT Platform

The essential components of 10T systems are typically built around a SoC (System on Chip) or a SoM
(System on Module). These components integrate processing units, communication modems, and 1/O
interfaces into a compact and energy-efficient solution.

A typical ESP32 SoC integrates one or two CPUs (such as Xtensa LX6, LX7, or RISC-V RV32 cores). These
SoCs also include wireless communication modems such as Wi-Fi, Bluetooth, and Zigbee/Thread, and
expose a variety of serial interfaces for connecting external components.

As a result, ESP32-based boards are well suited for building direct terminals using Wi-Fi connectivity.
Depending on the application design and duty cycle, they can achieve low or even very low power
consumption.

Another category of components consists of SoMs, such as the ASR560X from ASR Microelectronics. These
modules integrate ultra-low-power CPUs (e.g., ARM Cortex-MO0) together with LoORa modems such as the
SX1262. ASR560X-based solutions are particularly suitable for building very low-power remote terminals
using LoRa radio links.

loT Boards and Development Kits
loT boards typically combine an loT SoC or SoM with external components such as:

» EEPROM or flash memory,

+ USB-to-TTY interfaces,

» Battery charging and power conversion circulits,
+ Status LEDs,

* GPIO and expansion connectors.

We build our loT development kits (DevKits) around boards such as:

* Heltec ESP32-C3,

+ ASRO1,

+ DFRobot ESP32-C6.
These DevKits provide additional hardware elements, including batteries, solar panels, radio modems (e.g.,
SX1276/SX1278), GPIO headers, and serial bus connectors. They are designed to interface easily with a wide
range of sensors and actuators.

Firmware, Software, and Platforms
An loT platform completes the underlying hardware layers by providing firmware and software support. loT
applications can be developed using C/C++ and/or MicroPython programming environments.
These environments are complemented by the required drivers, protocol stacks, and software libraries.
In this study, we use several categories of SoCs, boards, DevKits, and platforms:

1. RISC-V-based platforms

+ ESP32-C3 or ESP32-C6 SoCs
* MicroPython programming
» Thonny IDE
2. LoRa-based ultra-low-power platforms

* ARM Cortex-M0 with SX1262 modem
* CubeCell (CC) boards and DevKits
* C/C++ programming using the Arduino IDE

In both cases, power consumption is analyzed using the PPK Il Power Profiler from Nordic Semiconductor.

Low Power loT Architectures SmartComputerLab 10

loT Platform

App 1l App 2 App N

loT Architectures loT Services
firmware/hardware software

loT Platforms

Fig 0.10 (a) loT Platform(s) for the experimentation/development of Low and Very Low Power consumption
loT Architectures. (b) From platforms to Applications

Espressif's ESP32-C3 Wi-Fi + Bluetooth™ Low Energy SoC

Core System Wireless MAC and RF
Peripherals RTC

ANED

-

Security

on

Modules having power in specific power modes:

@D Active

@ -ctive and Modem-sieep

@ Active, Modem-sleep, and Light-sleep; (G optional in Light-sleep
D Allmodes

Fig 0.11 loT ESP32C3 SoC - architecture block diagram

Low Power loT Architectures SmartComputerLab 11

Fig 0.12 loT ESP32C3 SoC, HT Board, and DevKit for the experimentation/development of Low and Very
Low Power consumption loT Architectures. The board is mounted on the top of RISC-V SBC with SpacemiT -
K1 SoC.

The firmware/software “layers” are developed with pPython using Thonny IDE.
Let us ask ChatGPT about Thonny IDE and pPython. Note that we do not need to indicate the use of
ESP32 familly of SOCs.

0.8 What is Thonny

Thonny IDE is a lightweight, beginner-friendly integrated development environment (IDE) designed for
programming in Python. It is particularly well-suited for beginners due to its simplicity, clean interface, and easy-
to-use features. In addition to regular Python programming, Thonny has excellent support for MicroPython,
making it a popular choice for programming microcontrollers and loT devices such as ESP8266, ESP32, and
Raspberry Pi Pico.

Thonny makes it easy to develop, deploy, and test code on MicroPython-compatible devices. It has built-in tools
to communicate with microcontrollers, upload scripts, and monitor real-time output from loT devices.

Features of Thonny for MicroPython:

» Simple Interface: Easy-to-navigate interface for beginners.

* MicroPython Support: Built-in support for MicroPython, making it easy to flash firmware and upload
code to devices like ESP32/ESP8266.

* Interactive Python Shell: Interactive REPL (Read-Eval-Print-Loop) for running Python commands
directly on the microcontroller.

* File System Management: Allows you to manage files on the microcontroller's file system, such as
uploading and downloading scripts.

+ Serial Monitor: Communicates with the microcontroller via a serial connection, allowing you to debug
and observe output from the device.

+ Code Debugging: Provides simple debugging tools like stepping through code and viewing variable
values.

How to Use Thonny IDE to Program loT Devices with MicroPython

Below is a step-by-step guide on how to use Thonny IDE to program loT devices with MicroPython, particularly
focusing on ESP32/ESP8266 and Raspberry Pi Pico.

Low Power loT Architectures SmartComputerLab 12

1. Install Thonny IDE
» Download and install Thonny from the official website (https://thonny.org/).
» Thonny is available for Windows, macOS, and Linux.
» During installation, you can opt to install Python alongside Thonny if it's not already installed on your
system.

2. Set Up Thonny for MicroPython
Once Thonny is installed, you need to configure it for MicroPython development.
* Choose the MicroPython Interpreter:
» Open Thonny.
* Go to the menu: Tools > Options > Interpreter.
* From the "Interpreter" drop-down list, select the appropriate MicroPython interpreter for your
board:
* For ESP32 or ESP8266: Select MicroPython (ESP32) or MicroPython (ESP8266).
» For Raspberry Pi Pico: Select MicroPython (Raspberry Pi Pico).
» Choose the correct serial port (COM port on Windows or /dev/ttyUSBx on Linux/macOS)
that your microcontroller is connected to.

3. Install MicroPython Firmware on the loT Device
Before you can start programming, you need to flash MicroPython firmware onto your loT device (if it's not
already installed). The process differs slightly based on your microcontroller.

For ESP32:

+ Download the MicroPython firmware for your board from the official MicroPython website.
+ ESP8266: Get the . bin file for ESP8266.
» ESP32: Get the . bin file for ESP32.
* Flash the Firmware:
» Connect your ESP32/ESP8266 board to your computer via USB.
* In Thonny, go to Tools > Options > Interpreter.
» Click the "Install or update firmware" button.
* In the "Install MicroPython" dialog:
» Select the target port (your board’s COM port).
» Select the MicroPython variant (ESP32 or ESP8266).
* Click the Install button to flash the firmware onto the board.

4. Writing and Uploading MicroPython Code
Once the MicroPython firmware is installed on your loT device, you can start writing code using Thonny.
Example: Blinking an LED on ESP32

* Open Thonny and write the following code in the editor:

from machine import Pin
from time import sleep
led = Pin(3, Pin.OUT)
Blink the LED
while True:

led.on()

sleep (1)

led.off ()

sleep (1)

+ Click the Run button (green arrow) or press F5.
» Thonny will automatically upload the code to the microcontroller and start running it.
* You should see the LED blinking on the device.

Serial Monitor and REPL:
* Thonny provides access to the MicroPython REPL in the terminal at the bottom of the window.

Low Power loT Architectures SmartComputerLab 13

https://thonny.org/

* You can enter commands directly and get instant feedback.
* Example: Type 1ed.on () inthe REPL, and the LED will turn on immediately.
5. File Management
Thonny allows you to manage the files on your microcontroller’s file system.
+ Upload a Script:
+ Write a script (e.g., main. py) and save it directly to the device by selecting File > Save As and
choosing "MicroPython Device" as the location.
» Files saved on the device can run automatically on startup if named main. py or boot . py.
+ List Files on the Device:
» Use the Files pane in Thonny (located on the right) to see the files stored on your MicroPython
device.
* You can add, remove, or download files from the microcontroller.

6. Debugging and Monitoring Output
Thonny has basic debugging features that are useful when developing loT applications:
* You can use breakpoints and step-through execution to check how the code behaves on the
microcontroller.
» The serial monitor (or REPL) at the bottom of the IDE can display output from print () statements in
your code, making it useful for debugging.

Example of Signal Output:

from machine import Pin
from time import sleep
led = Pin(3, Pin.OUT)
while True:

led.on()

print ("LED is ON")

sleep (1)

led.off ()

print ("LED is OFF")

sleep (1)

* The print () statements will show up in the Thonny terminal as the program runs, helping you verify
the behavior.

7. Advanced Features in Thonny
» Code Assistance: Thonny provides code completion and hints to help write MicroPython code faster.
» Graphical Output: If your code generates data (such as sensor readings), Thonny has support for
displaying graphical plots using matplot 1ib or similar libraries.
» External Libraries: You can upload external Python libraries (e.g., sensor drivers) to the MicroPython
device using the Files pane.
Typical Use Cases for loT with Thonny and MicroPython
1. Sensor Data Collection: Program an ESP32 or Raspberry Pi Pico to read data from sensors (e.g.,
temperature, humidity) and log or transmit it via Wi-Fi or Bluetooth.
2. Home Automation: Write MicroPython scripts to control 10T devices like smart lights, door locks, or
relays based on sensor input or remote commands.
3. Wireless Communication: Use MicroPython to send sensor data to the cloud using protocols like
MQTT or HTTP via Wi-Fi-enabled microcontrollers (e.g., ESP32).
4. Prototyping loT Projects: Thonny’s ease of use makes it ideal for quickly prototyping loT devices and
testing them in real-time.

Low Power loT Architectures SmartComputerLab 14

Thonny options X

General Interpreter Editor Theme & Font Run & Debug Terminal Shell Assistant

Which kind of interpreter should Thonny use for running your code?
MicroPython (ESP32) -

Details
Connecting via USE cable: Install MicroPython (esptool) x
Connect your device to the computer and select corresponding port below

{look for your device name, "USB Serial” or "UART").
If you can't find it, you may need to install proper USE driver first. Click the = button to see all features and options. If you're stuck then check the variant's
‘info' page for details or ask in MicroPython forum.

Connecting via WebREPL:
If your device supports WebREPL, first connect via serial, make sure WebREPL NB! Some boards need to be put into a special mode before they can be managed here
[import webrepl_setup), connect your computer and device to same network (e.g. by holding the BOOT button while plugging in). Some require hard reset after installing.
= WebREPL > below
You may need to tweak the install options (=) if the selected MicroPython variant doesn't match
Port ar WebREPL your device precisely. For example, you may need to set flash-mode to 'dio’ or flash-size to 'detect”.

USB Serial @ /dewttyUSB0

Target port USB Serial @ /dewttyUSBO -
3 Interrupt working program on connect
¥ Synchronize device's real time clock
¢ Use local time in real time clock MicraPythan family ESP32-C3 -
3 Restart interpreter before running a script
wariant <local file> -
a
1 Install or update wersion firmware.esp32c3.all.221023.bin -

info /media/ubuntu/0969-2 ABE/microPython.firmware/esp32c3

ol Writing at 0x00105112... (68 %) = Cancel

Fig.0.13a Thonny IDE - Options: MicroPython with ESP32 Interpreter, Serial port: USB0O
Now if the MicroPython firmware is not flashed on the board go to: Install or update. Then choose the type of
the board : ESP32-C3, local file, and look for the available firmware version, generic or prepared for your

board. (click on = button) After these operations (flushing and loading) you should find the following windows
with MicroPython device including only the boot . py module.

File Edit View Run Tools Help

CB 0o @™
Files <cuntitled> * HT.wifista.py
This computer = v PrunLy » {i5} TOrMaLLSSLU))
{FETE () TR () T 10 print(" - Channel: {}".format{channel))
& fentl.py 11 print(" - RSSI: [}".format(RSSI))
& :i‘r;::t":m 12 print(" - BSSID: {:02x}:{:02x}:{:02x}:{:02x}:{:02x}:{:02x}".Format(*bssi
& Sogesor corepy = print()
& h LoRaReceiver.py
& h.LoRasender.py 15
g h.main.LoRaRecaiver.py 16 def connect():
h.main.LoRaSender.py R
@ hsht2l test.py lf_ Lmport netwgrkﬁ) .
? ey 18 lph = '192.168.1.110
& hello.py 19 subnet = '255.255.255.08"
& HT.LoRaSenderDeltaLP.main.py = s Tana a0 4l
& HT.myaes.py
& HT.Python calculating average current.py
& HT.RTC.memory.py Shell

§&h HT.WiFi.sht21.max44000.TS.LP.py
&) HT.wifista.py
& http client.py hve - Where to save to? x
S reven MPY: soft
ttpclient.py
& htuzld.py
iZc.scan.py
& i2c.scan. pyWiFi.py
& install.max30120.py 555

This computer
& led blink.py

& led. mini.py
e LoRaPing.py

MicroPython device

MicraPythan device
& boot.py

Fig.0.13b Thonny IDE with 4 windows: files on your PC, files on your Micropython Device (HT board), editor
window, terminal window with python prompt >>>. The edited files may be saved on your PC or on the Device
(board).

Low Power loT Architectures SmartComputerLab 15

Thonny - MicroPython device :: /main.py @ 20:1

File Edit view Run Tools Help
LE®™ O @

Files <untitled> [main.py]

This computer i from machine import deepsleep
/ home / bako / mpython 2 from machine import Pin
= 2 from time import sleep
& main.mqtt.py

@ main.mgtt.thingspeak.py 5 led = Pin (1B, Pin.OUT)
& main.cled.data.py
& main.oled.py 7 led.value(1)

@) main.pir.sr602.py

@ main.pub.MQTT.TS.py]
& main.py Shell |
& main.rad. RCWL-0516.py
@& main.rgb.led.py 53 ' '
& main Sor0 help('modules’')
: : __main__ bluetooth heapq select
MicroPython device = _asyncio btree inisetup socket
@& boot.py _boot builtins io ssl
& deepsleep.sht21.max44.oled.py _espnow cmath json struct
&) deepsleep.sht21.oled.py _onewire collections machine sys
% :::.max-ﬂoog.py _thread cryptolib math time
) _webrepl deflate micropython tls
& shtax.py X . dmr .
& test.max44009.py aioespnow dht mip/__init__ uasyncio
& test.sht21.oled.py apal@6 ds18x20 neopixel uctypes
@ test.shtdl.py array errno network umgtt/robust
asyncio/__init__ esp ntptime umgtt/simple
asyncio/core esp32 onewire upysh
asyncio/event espnow os urequests
asyncio/funcs flashbdev platform vfs
asyncio/lock framebuf random webrepl
asyncio/stream gc re webrepl_setup
binascii hashlib requests/__init__ websocket
Plus any modules on the filesystem
>33 |

Fig.0.13c Thonny IDE with 4 windows: files on your PC, files on your Micropython Device (HT board), editor
window, terminal window with python prompt

Low Power loT Architectures SmartComputerLab 16

	0.1 Introduction
	Terminals (IoT Devices / End Nodes)
	Routers
	Gateways (IoT Gateways)
	Servers (IoT Cloud Servers)
	Key considerations
	0.2 Global IoT space , IoT Sockets and data “streams”
	IoT Architecture Overview
	Identification and Communication Model
	Data Streams and Compression

	0.3 Low and Very Low Power consumption IoT components
	0.4 Memory hierarchy for data, parameters and meta-parameters
	0.5 Terminals - Operational modes
	0.6 Cyclical (adaptive) mode with parameters and meta-parameters
	0.7 From SoC to an IoT Platform
	IoT Boards and Development Kits
	Firmware, Software, and Platforms

	0.8 What is Thonny

